What is an Elastic integration?

This integration is powered by Elastic Agent. Elastic Agent is a single, unified way to add monitoring for logs, metrics, and other types of data to a host. It can also protect hosts from security threats, query data from operating systems, forward data from remote services or hardware, and more. Refer to our documentation for a detailed comparison between Beats and Elastic Agent.

Prefer to use Beats for this use case? See Filebeat modules for logs or Metricbeat modules for metrics.

The System integration allows you to monitor servers, personal computers, and more.

Use the System integration to collect metrics and logs from your machines. Then visualize that data in Kibana, create alerts to notify you if something goes wrong, and reference data when troubleshooting an issue.

For example, if you wanted to be notified when less than 10% of the disk space is still available, you could install the System integration to send file system metrics to Elastic. Then, you could view real-time updates to disk space used on your system in Kibana's [Metrics System] Overview dashboard. You could also set up a new rule in the Elastic Observability Metrics app to alert you when the percent free is less than 10% of the total disk space.

Data streams

The System integration collects two types of data: logs and metrics.

Logs help you keep a record of events that happen on your machine. Log data streams collected by the System integration include application, system, and security events on machines running Windows and auth and syslog events on machines running macOS or Linux. See more details in the Logs reference.

Metrics give you insight into the state of the machine. Metric data streams collected by the System integration include CPU usage, load statistics, memory usage, information on network behavior, and more. See more details in the Metrics reference.

You can enable and disable individual data streams. If all data streams are disabled and the System integration is still enabled, Fleet uses the default data streams.

Requirements

You need Elasticsearch for storing and searching your data and Kibana for visualizing and managing it. You can use our hosted Elasticsearch Service on Elastic Cloud, which is recommended, or self-manage the Elastic Stack on your own hardware.

Each data stream collects different kinds of metric data, which may require dedicated permissions to be fetched and which may vary across operating systems. Details on the permissions needed for each data stream are available in the Metrics reference.

Setup

For step-by-step instructions on how to set up an integration, see the Getting started guide.

Troubleshooting

Note that certain data streams may access /proc to gather process information, and the resulting ptrace_may_access() call by the kernel to check for permissions can be blocked by AppArmor and other LSM software, even though the System module doesn't use ptrace directly.

In addition, when running inside a container the proc filesystem directory of the host should be set using system.hostfs setting to /hostfs.

Logs reference

Application

The Windows application data stream provides events from the Windows Application event log.

Supported operating systems

  • Windows

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
error.message
Error message.
match_only_text
event.code
Identification code for this event, if one exists. Some event sources use event codes to identify messages unambiguously, regardless of message language or wording adjustments over time. An example of this is the Windows Event ID.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset.
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.module
Event module
constant_keyword
event.original
Raw text message of entire event. Used to demonstrate log integrity or where the full log message (before splitting it up in multiple parts) may be required, e.g. for reindex. This field is not indexed and doc_values are disabled. It cannot be searched, but it can be retrieved from _source. If users wish to override this and index this field, please see Field data types in the Elasticsearch Reference.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
message
For log events the message field contains the log message, optimized for viewing in a log viewer. For structured logs without an original message field, other fields can be concatenated to form a human-readable summary of the event. If multiple messages exist, they can be combined into one message.
match_only_text
winlog.activity_id
A globally unique identifier that identifies the current activity. The events that are published with this identifier are part of the same activity.
keyword
winlog.api
The event log API type used to read the record. The possible values are "wineventlog" for the Windows Event Log API or "eventlogging" for the Event Logging API. The Event Logging API was designed for Windows Server 2003 or Windows 2000 operating systems. In Windows Vista, the event logging infrastructure was redesigned. On Windows Vista or later operating systems, the Windows Event Log API is used. Winlogbeat automatically detects which API to use for reading event logs.
keyword
winlog.channel
The name of the channel from which this record was read. This value is one of the names from the event_logs collection in the configuration.
keyword
winlog.computer_name
The name of the computer that generated the record. When using Windows event forwarding, this name can differ from agent.hostname.
keyword
winlog.event_data
The event-specific data. This field is mutually exclusive with user_data. If you are capturing event data on versions prior to Windows Vista, the parameters in event_data are named param1, param2, and so on, because event log parameters are unnamed in earlier versions of Windows.
object
winlog.event_data.AuthenticationPackageName
keyword
winlog.event_data.Binary
keyword
winlog.event_data.BitlockerUserInputTime
keyword
winlog.event_data.BootMode
keyword
winlog.event_data.BootType
keyword
winlog.event_data.BuildVersion
keyword
winlog.event_data.Company
keyword
winlog.event_data.CorruptionActionState
keyword
winlog.event_data.CreationUtcTime
keyword
winlog.event_data.Description
keyword
winlog.event_data.Detail
keyword
winlog.event_data.DeviceName
keyword
winlog.event_data.DeviceNameLength
keyword
winlog.event_data.DeviceTime
keyword
winlog.event_data.DeviceVersionMajor
keyword
winlog.event_data.DeviceVersionMinor
keyword
winlog.event_data.DriveName
keyword
winlog.event_data.DriverName
keyword
winlog.event_data.DriverNameLength
keyword
winlog.event_data.DwordVal
keyword
winlog.event_data.EntryCount
keyword
winlog.event_data.ExtraInfo
keyword
winlog.event_data.FailureName
keyword
winlog.event_data.FailureNameLength
keyword
winlog.event_data.FileVersion
keyword
winlog.event_data.FinalStatus
keyword
winlog.event_data.Group
keyword
winlog.event_data.IdleImplementation
keyword
winlog.event_data.IdleStateCount
keyword
winlog.event_data.ImpersonationLevel
keyword
winlog.event_data.IntegrityLevel
keyword
winlog.event_data.IpAddress
keyword
winlog.event_data.IpPort
keyword
winlog.event_data.KeyLength
keyword
winlog.event_data.LastBootGood
keyword
winlog.event_data.LastShutdownGood
keyword
winlog.event_data.LmPackageName
keyword
winlog.event_data.LogonGuid
keyword
winlog.event_data.LogonId
keyword
winlog.event_data.LogonProcessName
keyword
winlog.event_data.LogonType
keyword
winlog.event_data.MajorVersion
keyword
winlog.event_data.MaximumPerformancePercent
keyword
winlog.event_data.MemberName
keyword
winlog.event_data.MemberSid
keyword
winlog.event_data.MinimumPerformancePercent
keyword
winlog.event_data.MinimumThrottlePercent
keyword
winlog.event_data.MinorVersion
keyword
winlog.event_data.NewProcessId
keyword
winlog.event_data.NewProcessName
keyword
winlog.event_data.NewSchemeGuid
keyword
winlog.event_data.NewTime
keyword
winlog.event_data.NominalFrequency
keyword
winlog.event_data.Number
keyword
winlog.event_data.OldSchemeGuid
keyword
winlog.event_data.OldTime
keyword
winlog.event_data.OriginalFileName
keyword
winlog.event_data.Path
keyword
winlog.event_data.PerformanceImplementation
keyword
winlog.event_data.PreviousCreationUtcTime
keyword
winlog.event_data.PreviousTime
keyword
winlog.event_data.PrivilegeList
keyword
winlog.event_data.ProcessId
keyword
winlog.event_data.ProcessName
keyword
winlog.event_data.ProcessPath
keyword
winlog.event_data.ProcessPid
keyword
winlog.event_data.Product
keyword
winlog.event_data.PuaCount
keyword
winlog.event_data.PuaPolicyId
keyword
winlog.event_data.QfeVersion
keyword
winlog.event_data.Reason
keyword
winlog.event_data.SchemaVersion
keyword
winlog.event_data.ScriptBlockText
keyword
winlog.event_data.ServiceName
keyword
winlog.event_data.ServiceVersion
keyword
winlog.event_data.ShutdownActionType
keyword
winlog.event_data.ShutdownEventCode
keyword
winlog.event_data.ShutdownReason
keyword
winlog.event_data.Signature
keyword
winlog.event_data.SignatureStatus
keyword
winlog.event_data.Signed
keyword
winlog.event_data.StartTime
keyword
winlog.event_data.State
keyword
winlog.event_data.Status
keyword
winlog.event_data.StopTime
keyword
winlog.event_data.SubjectDomainName
keyword
winlog.event_data.SubjectLogonId
keyword
winlog.event_data.SubjectUserName
keyword
winlog.event_data.SubjectUserSid
keyword
winlog.event_data.TSId
keyword
winlog.event_data.TargetDomainName
keyword
winlog.event_data.TargetInfo
keyword
winlog.event_data.TargetLogonGuid
keyword
winlog.event_data.TargetLogonId
keyword
winlog.event_data.TargetServerName
keyword
winlog.event_data.TargetUserName
keyword
winlog.event_data.TargetUserSid
keyword
winlog.event_data.TerminalSessionId
keyword
winlog.event_data.TokenElevationType
keyword
winlog.event_data.TransmittedServices
keyword
winlog.event_data.UserSid
keyword
winlog.event_data.Version
keyword
winlog.event_data.Workstation
keyword
winlog.event_data.param1
keyword
winlog.event_data.param2
keyword
winlog.event_data.param3
keyword
winlog.event_data.param4
keyword
winlog.event_data.param5
keyword
winlog.event_data.param6
keyword
winlog.event_data.param7
keyword
winlog.event_data.param8
keyword
winlog.event_id
The event identifier. The value is specific to the source of the event.
keyword
winlog.keywords
The keywords are used to classify an event.
keyword
winlog.opcode
The opcode defined in the event. Task and opcode are typically used to identify the location in the application from where the event was logged.
keyword
winlog.process.pid
The process_id of the Client Server Runtime Process.
long
winlog.process.thread.id
long
winlog.provider_guid
A globally unique identifier that identifies the provider that logged the event.
keyword
winlog.provider_name
The source of the event log record (the application or service that logged the record).
keyword
winlog.record_id
The record ID of the event log record. The first record written to an event log is record number 1, and other records are numbered sequentially. If the record number reaches the maximum value (2^32^ for the Event Logging API and 2^64^ for the Windows Event Log API), the next record number will be 0.
keyword
winlog.related_activity_id
A globally unique identifier that identifies the activity to which control was transferred to. The related events would then have this identifier as their activity_id identifier.
keyword
winlog.task
The task defined in the event. Task and opcode are typically used to identify the location in the application from where the event was logged. The category used by the Event Logging API (on pre Windows Vista operating systems) is written to this field.
keyword
winlog.user.domain
The domain that the account associated with this event is a member of.
keyword
winlog.user.identifier
The Windows security identifier (SID) of the account associated with this event. If Winlogbeat cannot resolve the SID to a name, then the user.name, user.domain, and user.type fields will be omitted from the event. If you discover Winlogbeat not resolving SIDs, review the log for clues as to what the problem may be.
keyword
winlog.user.name
Name of the user associated with this event.
keyword
winlog.user.type
The type of account associated with this event.
keyword
winlog.user_data
The event specific data. This field is mutually exclusive with event_data.
object
winlog.version
The version number of the event's definition.
long

System

The Windows system data stream provides events from the Windows System event log.

Supported operating systems

  • Windows

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.code
Identification code for this event, if one exists. Some event sources use event codes to identify messages unambiguously, regardless of message language or wording adjustments over time. An example of this is the Windows Event ID.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset.
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.module
Name of the module this data is coming from. If your monitoring agent supports the concept of modules or plugins to process events of a given source (e.g. Apache logs), event.module should contain the name of this module.
keyword
event.original
Raw text message of entire event. Used to demonstrate log integrity or where the full log message (before splitting it up in multiple parts) may be required, e.g. for reindex. This field is not indexed and doc_values are disabled. It cannot be searched, but it can be retrieved from _source. If users wish to override this and index this field, please see Field data types in the Elasticsearch Reference.
keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.provider
Source of the event. Event transports such as Syslog or the Windows Event Log typically mention the source of an event. It can be the name of the software that generated the event (e.g. Sysmon, httpd), or of a subsystem of the operating system (kernel, Microsoft-Windows-Security-Auditing).
keyword
event.sequence
Sequence number of the event. The sequence number is a value published by some event sources, to make the exact ordering of events unambiguous, regardless of the timestamp precision.
long
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
message
For log events the message field contains the log message, optimized for viewing in a log viewer. For structured logs without an original message field, other fields can be concatenated to form a human-readable summary of the event. If multiple messages exist, they can be combined into one message.
match_only_text
winlog.activity_id
A globally unique identifier that identifies the current activity. The events that are published with this identifier are part of the same activity.
keyword
winlog.api
The event log API type used to read the record. The possible values are "wineventlog" for the Windows Event Log API or "eventlogging" for the Event Logging API. The Event Logging API was designed for Windows Server 2003 or Windows 2000 operating systems. In Windows Vista, the event logging infrastructure was redesigned. On Windows Vista or later operating systems, the Windows Event Log API is used. Winlogbeat automatically detects which API to use for reading event logs.
keyword
winlog.channel
The name of the channel from which this record was read. This value is one of the names from the event_logs collection in the configuration.
keyword
winlog.computer_name
The name of the computer that generated the record. When using Windows event forwarding, this name can differ from agent.hostname.
keyword
winlog.event_data
The event-specific data. This field is mutually exclusive with user_data. If you are capturing event data on versions prior to Windows Vista, the parameters in event_data are named param1, param2, and so on, because event log parameters are unnamed in earlier versions of Windows.
object
winlog.event_data.AuthenticationPackageName
keyword
winlog.event_data.Binary
keyword
winlog.event_data.BitlockerUserInputTime
keyword
winlog.event_data.BootMode
keyword
winlog.event_data.BootType
keyword
winlog.event_data.BuildVersion
keyword
winlog.event_data.Company
keyword
winlog.event_data.CorruptionActionState
keyword
winlog.event_data.CreationUtcTime
keyword
winlog.event_data.Description
keyword
winlog.event_data.Detail
keyword
winlog.event_data.DeviceName
keyword
winlog.event_data.DeviceNameLength
keyword
winlog.event_data.DeviceTime
keyword
winlog.event_data.DeviceVersionMajor
keyword
winlog.event_data.DeviceVersionMinor
keyword
winlog.event_data.DriveName
keyword
winlog.event_data.DriverName
keyword
winlog.event_data.DriverNameLength
keyword
winlog.event_data.DwordVal
keyword
winlog.event_data.EntryCount
keyword
winlog.event_data.ExtraInfo
keyword
winlog.event_data.FailureName
keyword
winlog.event_data.FailureNameLength
keyword
winlog.event_data.FileVersion
keyword
winlog.event_data.FinalStatus
keyword
winlog.event_data.Group
keyword
winlog.event_data.IdleImplementation
keyword
winlog.event_data.IdleStateCount
keyword
winlog.event_data.ImpersonationLevel
keyword
winlog.event_data.IntegrityLevel
keyword
winlog.event_data.IpAddress
keyword
winlog.event_data.IpPort
keyword
winlog.event_data.KeyLength
keyword
winlog.event_data.LastBootGood
keyword
winlog.event_data.LastShutdownGood
keyword
winlog.event_data.LmPackageName
keyword
winlog.event_data.LogonGuid
keyword
winlog.event_data.LogonId
keyword
winlog.event_data.LogonProcessName
keyword
winlog.event_data.LogonType
keyword
winlog.event_data.MajorVersion
keyword
winlog.event_data.MaximumPerformancePercent
keyword
winlog.event_data.MemberName
keyword
winlog.event_data.MemberSid
keyword
winlog.event_data.MinimumPerformancePercent
keyword
winlog.event_data.MinimumThrottlePercent
keyword
winlog.event_data.MinorVersion
keyword
winlog.event_data.NewProcessId
keyword
winlog.event_data.NewProcessName
keyword
winlog.event_data.NewSchemeGuid
keyword
winlog.event_data.NewTime
keyword
winlog.event_data.NominalFrequency
keyword
winlog.event_data.Number
keyword
winlog.event_data.OldSchemeGuid
keyword
winlog.event_data.OldTime
keyword
winlog.event_data.OriginalFileName
keyword
winlog.event_data.Path
keyword
winlog.event_data.PerformanceImplementation
keyword
winlog.event_data.PreviousCreationUtcTime
keyword
winlog.event_data.PreviousTime
keyword
winlog.event_data.PrivilegeList
keyword
winlog.event_data.ProcessId
keyword
winlog.event_data.ProcessName
keyword
winlog.event_data.ProcessPath
keyword
winlog.event_data.ProcessPid
keyword
winlog.event_data.Product
keyword
winlog.event_data.PuaCount
keyword
winlog.event_data.PuaPolicyId
keyword
winlog.event_data.QfeVersion
keyword
winlog.event_data.Reason
keyword
winlog.event_data.SchemaVersion
keyword
winlog.event_data.ScriptBlockText
keyword
winlog.event_data.ServiceName
keyword
winlog.event_data.ServiceVersion
keyword
winlog.event_data.ShutdownActionType
keyword
winlog.event_data.ShutdownEventCode
keyword
winlog.event_data.ShutdownReason
keyword
winlog.event_data.Signature
keyword
winlog.event_data.SignatureStatus
keyword
winlog.event_data.Signed
keyword
winlog.event_data.StartTime
keyword
winlog.event_data.State
keyword
winlog.event_data.Status
keyword
winlog.event_data.StopTime
keyword
winlog.event_data.SubjectDomainName
keyword
winlog.event_data.SubjectLogonId
keyword
winlog.event_data.SubjectUserName
keyword
winlog.event_data.SubjectUserSid
keyword
winlog.event_data.TSId
keyword
winlog.event_data.TargetDomainName
keyword
winlog.event_data.TargetInfo
keyword
winlog.event_data.TargetLogonGuid
keyword
winlog.event_data.TargetLogonId
keyword
winlog.event_data.TargetServerName
keyword
winlog.event_data.TargetUserName
keyword
winlog.event_data.TargetUserSid
keyword
winlog.event_data.TerminalSessionId
keyword
winlog.event_data.TokenElevationType
keyword
winlog.event_data.TransmittedServices
keyword
winlog.event_data.UserSid
keyword
winlog.event_data.Version
keyword
winlog.event_data.Workstation
keyword
winlog.event_data.param1
keyword
winlog.event_data.param2
keyword
winlog.event_data.param3
keyword
winlog.event_data.param4
keyword
winlog.event_data.param5
keyword
winlog.event_data.param6
keyword
winlog.event_data.param7
keyword
winlog.event_data.param8
keyword
winlog.event_id
The event identifier. The value is specific to the source of the event.
keyword
winlog.keywords
The keywords are used to classify an event.
keyword
winlog.opcode
The opcode defined in the event. Task and opcode are typically used to identify the location in the application from where the event was logged.
keyword
winlog.process.pid
The process_id of the Client Server Runtime Process.
long
winlog.process.thread.id
long
winlog.provider_guid
A globally unique identifier that identifies the provider that logged the event.
keyword
winlog.provider_name
The source of the event log record (the application or service that logged the record).
keyword
winlog.record_id
The record ID of the event log record. The first record written to an event log is record number 1, and other records are numbered sequentially. If the record number reaches the maximum value (2^32^ for the Event Logging API and 2^64^ for the Windows Event Log API), the next record number will be 0.
keyword
winlog.related_activity_id
A globally unique identifier that identifies the activity to which control was transferred to. The related events would then have this identifier as their activity_id identifier.
keyword
winlog.task
The task defined in the event. Task and opcode are typically used to identify the location in the application from where the event was logged. The category used by the Event Logging API (on pre Windows Vista operating systems) is written to this field.
keyword
winlog.user.domain
The domain that the account associated with this event is a member of.
keyword
winlog.user.identifier
The Windows security identifier (SID) of the account associated with this event. If Winlogbeat cannot resolve the SID to a name, then the user.name, user.domain, and user.type fields will be omitted from the event. If you discover Winlogbeat not resolving SIDs, review the log for clues as to what the problem may be.
keyword
winlog.user.name
Name of the user associated with this event.
keyword
winlog.user.type
The type of account associated with this event.
keyword
winlog.user_data
The event specific data. This field is mutually exclusive with event_data.
object
winlog.version
The version number of the event's definition.
long

Security

The Windows security data stream provides events from the Windows Security event log.

Supported operating systems

  • Windows

An example event for security looks as following:

{
    "@timestamp": "2019-11-07T10:37:04.226Z",
    "agent": {
        "ephemeral_id": "aa973fb6-b8fe-427e-a9e9-51c411926db8",
        "id": "dbc761fd-dec4-4bc7-acec-8e5cb02a0cb6",
        "name": "docker-fleet-agent",
        "type": "filebeat",
        "version": "8.2.1"
    },
    "data_stream": {
        "dataset": "system.security",
        "namespace": "ep",
        "type": "logs"
    },
    "ecs": {
        "version": "8.0.0"
    },
    "elastic_agent": {
        "id": "dbc761fd-dec4-4bc7-acec-8e5cb02a0cb6",
        "snapshot": true,
        "version": "8.2.1"
    },
    "event": {
        "action": "logging-service-shutdown",
        "agent_id_status": "verified",
        "category": [
            "process"
        ],
        "code": "1100",
        "created": "2022-05-18T06:07:07.204Z",
        "dataset": "system.security",
        "ingested": "2022-05-18T06:07:08Z",
        "kind": "event",
        "original": "\u003cEvent xmlns='http://schemas.microsoft.com/win/2004/08/events/event'\u003e\u003cSystem\u003e\u003cProvider Name='Microsoft-Windows-Eventlog' Guid='{fc65ddd8-d6ef-4962-83d5-6e5cfe9ce148}'/\u003e\u003cEventID\u003e1100\u003c/EventID\u003e\u003cVersion\u003e0\u003c/Version\u003e\u003cLevel\u003e4\u003c/Level\u003e\u003cTask\u003e103\u003c/Task\u003e\u003cOpcode\u003e0\u003c/Opcode\u003e\u003cKeywords\u003e0x4020000000000000\u003c/Keywords\u003e\u003cTimeCreated SystemTime='2019-11-07T10:37:04.226092500Z'/\u003e\u003cEventRecordID\u003e14257\u003c/EventRecordID\u003e\u003cCorrelation/\u003e\u003cExecution ProcessID='1144' ThreadID='4532'/\u003e\u003cChannel\u003eSecurity\u003c/Channel\u003e\u003cComputer\u003eWIN-41OB2LO92CR.wlbeat.local\u003c/Computer\u003e\u003cSecurity/\u003e\u003c/System\u003e\u003cUserData\u003e\u003cServiceShutdown xmlns='http://manifests.microsoft.com/win/2004/08/windows/eventlog'\u003e\u003c/ServiceShutdown\u003e\u003c/UserData\u003e\u003c/Event\u003e",
        "outcome": "success",
        "provider": "Microsoft-Windows-Eventlog",
        "type": [
            "end"
        ]
    },
    "host": {
        "name": "WIN-41OB2LO92CR.wlbeat.local"
    },
    "input": {
        "type": "httpjson"
    },
    "log": {
        "level": "information"
    },
    "tags": [
        "forwarded",
        "preserve_original_event"
    ],
    "winlog": {
        "channel": "Security",
        "computer_name": "WIN-41OB2LO92CR.wlbeat.local",
        "event_id": "1100",
        "keywords": [
            "Audit Success"
        ],
        "level": "information",
        "opcode": "Info",
        "outcome": "success",
        "process": {
            "pid": 1144,
            "thread": {
                "id": 4532
            }
        },
        "provider_guid": "{fc65ddd8-d6ef-4962-83d5-6e5cfe9ce148}",
        "provider_name": "Microsoft-Windows-Eventlog",
        "record_id": "14257",
        "time_created": "2019-11-07T10:37:04.226Z"
    }
}

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset name.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.code
Error code describing the error.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.code
Identification code for this event, if one exists. Some event sources use event codes to identify messages unambiguously, regardless of message language or wording adjustments over time. An example of this is the Windows Event ID.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset.
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.module
Name of the module this data is coming from. If your monitoring agent supports the concept of modules or plugins to process events of a given source (e.g. Apache logs), event.module should contain the name of this module.
keyword
event.original
Raw text message of entire event. Used to demonstrate log integrity or where the full log message (before splitting it up in multiple parts) may be required, e.g. for reindex. This field is not indexed and doc_values are disabled. It cannot be searched, but it can be retrieved from _source. If users wish to override this and index this field, please see Field data types in the Elasticsearch Reference.
keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.provider
Source of the event. Event transports such as Syslog or the Windows Event Log typically mention the source of an event. It can be the name of the software that generated the event (e.g. Sysmon, httpd), or of a subsystem of the operating system (kernel, Microsoft-Windows-Security-Auditing).
keyword
event.sequence
Sequence number of the event. The sequence number is a value published by some event sources, to make the exact ordering of events unambiguous, regardless of the timestamp precision.
long
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
file.directory
Directory where the file is located. It should include the drive letter, when appropriate.
keyword
file.extension
File extension, excluding the leading dot. Note that when the file name has multiple extensions (example.tar.gz), only the last one should be captured ("gz", not "tar.gz").
keyword
file.name
Name of the file including the extension, without the directory.
keyword
file.path
Full path to the file, including the file name. It should include the drive letter, when appropriate.
keyword
file.path.text
Multi-field of file.path.
match_only_text
file.target_path
Target path for symlinks.
keyword
file.target_path.text
Multi-field of file.target_path.
match_only_text
group.domain
Name of the directory the group is a member of. For example, an LDAP or Active Directory domain name.
keyword
group.id
Unique identifier for the group on the system/platform.
keyword
group.name
Name of the group.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
input.type
Type of Filebeat input.
keyword
log.file.path
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate. If the event wasn't read from a log file, do not populate this field.
keyword
log.level
Original log level of the log event. If the source of the event provides a log level or textual severity, this is the one that goes in log.level. If your source doesn't specify one, you may put your event transport's severity here (e.g. Syslog severity). Some examples are warn, err, i, informational.
keyword
message
For log events the message field contains the log message, optimized for viewing in a log viewer. For structured logs without an original message field, other fields can be concatenated to form a human-readable summary of the event. If multiple messages exist, they can be combined into one message.
match_only_text
process.args
Array of process arguments, starting with the absolute path to the executable. May be filtered to protect sensitive information.
keyword
process.args_count
Length of the process.args array. This field can be useful for querying or performing bucket analysis on how many arguments were provided to start a process. More arguments may be an indication of suspicious activity.
long
process.command_line
Full command line that started the process, including the absolute path to the executable, and all arguments. Some arguments may be filtered to protect sensitive information.
wildcard
process.command_line.text
Multi-field of process.command_line.
match_only_text
process.entity_id
Unique identifier for the process. The implementation of this is specified by the data source, but some examples of what could be used here are a process-generated UUID, Sysmon Process GUIDs, or a hash of some uniquely identifying components of a process. Constructing a globally unique identifier is a common practice to mitigate PID reuse as well as to identify a specific process over time, across multiple monitored hosts.
keyword
process.executable
Absolute path to the process executable.
keyword
process.executable.text
Multi-field of process.executable.
match_only_text
process.name
Process name. Sometimes called program name or similar.
keyword
process.name.text
Multi-field of process.name.
match_only_text
process.parent.executable
Absolute path to the process executable.
keyword
process.parent.executable.text
Multi-field of process.parent.executable.
match_only_text
process.parent.name
Process name. Sometimes called program name or similar.
keyword
process.parent.name.text
Multi-field of process.parent.name.
match_only_text
process.parent.pid
Process id.
long
process.pid
Process id.
long
process.title
Process title. The proctitle, some times the same as process name. Can also be different: for example a browser setting its title to the web page currently opened.
keyword
process.title.text
Multi-field of process.title.
match_only_text
related.hash
All the hashes seen on your event. Populating this field, then using it to search for hashes can help in situations where you're unsure what the hash algorithm is (and therefore which key name to search).
keyword
related.hosts
All hostnames or other host identifiers seen on your event. Example identifiers include FQDNs, domain names, workstation names, or aliases.
keyword
related.ip
All of the IPs seen on your event.
ip
related.user
All the user names or other user identifiers seen on the event.
keyword
service.name
Name of the service data is collected from. The name of the service is normally user given. This allows for distributed services that run on multiple hosts to correlate the related instances based on the name. In the case of Elasticsearch the service.name could contain the cluster name. For Beats the service.name is by default a copy of the service.type field if no name is specified.
keyword
service.type
The type of the service data is collected from. The type can be used to group and correlate logs and metrics from one service type. Example: If logs or metrics are collected from Elasticsearch, service.type would be elasticsearch.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.domain
The domain name of the source system. This value may be a host name, a fully qualified domain name, or another host naming format. The value may derive from the original event or be added from enrichment.
keyword
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.name
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
keyword
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
tags
List of keywords used to tag each event.
keyword
user.changes.name
Short name or login of the user.
keyword
user.changes.name.text
Multi-field of user.changes.name.
match_only_text
user.domain
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
keyword
user.effective.domain
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
keyword
user.effective.id
Unique identifier of the user.
keyword
user.effective.name
Short name or login of the user.
keyword
user.effective.name.text
Multi-field of user.effective.name.
match_only_text
user.id
Unique identifier of the user.
keyword
user.name
Short name or login of the user.
keyword
user.name.text
Multi-field of user.name.
match_only_text
user.target.domain
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
keyword
user.target.group.domain
Name of the directory the group is a member of. For example, an LDAP or Active Directory domain name.
keyword
user.target.group.id
Unique identifier for the group on the system/platform.
keyword
user.target.group.name
Name of the group.
keyword
user.target.id
Unique identifier of the user.
keyword
user.target.name
Short name or login of the user.
keyword
user.target.name.text
Multi-field of user.target.name.
match_only_text
winlog.activity_id
A globally unique identifier that identifies the current activity. The events that are published with this identifier are part of the same activity.
keyword
winlog.api
The event log API type used to read the record. The possible values are "wineventlog" for the Windows Event Log API or "eventlogging" for the Event Logging API. The Event Logging API was designed for Windows Server 2003 or Windows 2000 operating systems. In Windows Vista, the event logging infrastructure was redesigned. On Windows Vista or later operating systems, the Windows Event Log API is used. Winlogbeat automatically detects which API to use for reading event logs.
keyword
winlog.channel
The name of the channel from which this record was read. This value is one of the names from the event_logs collection in the configuration.
keyword
winlog.computerObject.domain
keyword
winlog.computerObject.id
keyword
winlog.computerObject.name
keyword
winlog.computer_name
The name of the computer that generated the record. When using Windows event forwarding, this name can differ from agent.hostname.
keyword
winlog.event_data
The event-specific data. This field is mutually exclusive with user_data. If you are capturing event data on versions prior to Windows Vista, the parameters in event_data are named param1, param2, and so on, because event log parameters are unnamed in earlier versions of Windows.
object
winlog.event_data.AccessGranted
keyword
winlog.event_data.AccessList
keyword
winlog.event_data.AccessListDescription
keyword
winlog.event_data.AccessMask
keyword
winlog.event_data.AccessMaskDescription
keyword
winlog.event_data.AccessReason
keyword
winlog.event_data.AccessRemoved
keyword
winlog.event_data.AccountDomain
keyword
winlog.event_data.AccountExpires
keyword
winlog.event_data.AccountName
keyword
winlog.event_data.AllowedToDelegateTo
keyword
winlog.event_data.AuditPolicyChanges
keyword
winlog.event_data.AuditPolicyChangesDescription
keyword
winlog.event_data.AuditSourceName
keyword
winlog.event_data.AuthenticationPackageName
keyword
winlog.event_data.Binary
keyword
winlog.event_data.BitlockerUserInputTime
keyword
winlog.event_data.BootMode
keyword
winlog.event_data.BootType
keyword
winlog.event_data.BuildVersion
keyword
winlog.event_data.CallerProcessId
keyword
winlog.event_data.CallerProcessName
keyword
winlog.event_data.Category
keyword
winlog.event_data.CategoryId
keyword
winlog.event_data.ClientAddress
keyword
winlog.event_data.ClientName
keyword
winlog.event_data.CommandLine
keyword
winlog.event_data.Company
keyword
winlog.event_data.ComputerAccountChange
keyword
winlog.event_data.CorruptionActionState
keyword
winlog.event_data.CrashOnAuditFailValue
keyword
winlog.event_data.CreationUtcTime
keyword
winlog.event_data.Description
keyword
winlog.event_data.Detail
keyword
winlog.event_data.DeviceName
keyword
winlog.event_data.DeviceNameLength
keyword
winlog.event_data.DeviceTime
keyword
winlog.event_data.DeviceVersionMajor
keyword
winlog.event_data.DeviceVersionMinor
keyword
winlog.event_data.DisplayName
keyword
winlog.event_data.DnsHostName
keyword
winlog.event_data.DomainBehaviorVersion
keyword
winlog.event_data.DomainName
keyword
winlog.event_data.DomainPolicyChanged
keyword
winlog.event_data.DomainSid
keyword
winlog.event_data.DriveName
keyword
winlog.event_data.DriverName
keyword
winlog.event_data.DriverNameLength
keyword
winlog.event_data.Dummy
keyword
winlog.event_data.DwordVal
keyword
winlog.event_data.EntryCount
keyword
winlog.event_data.EventSourceId
keyword
winlog.event_data.ExtraInfo
keyword
winlog.event_data.FailureName
keyword
winlog.event_data.FailureNameLength
keyword
winlog.event_data.FailureReason
keyword
winlog.event_data.FileVersion
keyword
winlog.event_data.FinalStatus
keyword
winlog.event_data.Group
keyword
winlog.event_data.GroupTypeChange
keyword
winlog.event_data.HandleId
keyword
winlog.event_data.HomeDirectory
keyword
winlog.event_data.HomePath
keyword
winlog.event_data.IdleImplementation
keyword
winlog.event_data.IdleStateCount
keyword
winlog.event_data.ImpersonationLevel
keyword
winlog.event_data.IntegrityLevel
keyword
winlog.event_data.IpAddress
keyword
winlog.event_data.IpPort
keyword
winlog.event_data.KerberosPolicyChange
keyword
winlog.event_data.KeyLength
keyword
winlog.event_data.LastBootGood
keyword
winlog.event_data.LastShutdownGood
keyword
winlog.event_data.LmPackageName
keyword
winlog.event_data.LogonGuid
keyword
winlog.event_data.LogonHours
keyword
winlog.event_data.LogonID
keyword
winlog.event_data.LogonId
keyword
winlog.event_data.LogonProcessName
keyword
winlog.event_data.LogonType
keyword
winlog.event_data.MachineAccountQuota
keyword
winlog.event_data.MajorVersion
keyword
winlog.event_data.MandatoryLabel
keyword
winlog.event_data.MaximumPerformancePercent
keyword
winlog.event_data.MemberName
keyword
winlog.event_data.MemberSid
keyword
winlog.event_data.MinimumPerformancePercent
keyword
winlog.event_data.MinimumThrottlePercent
keyword
winlog.event_data.MinorVersion
keyword
winlog.event_data.MixedDomainMode
keyword
winlog.event_data.NewProcessId
keyword
winlog.event_data.NewProcessName
keyword
winlog.event_data.NewSchemeGuid
keyword
winlog.event_data.NewSd
keyword
winlog.event_data.NewSdDacl0
keyword
winlog.event_data.NewSdDacl1
keyword
winlog.event_data.NewSdDacl2
keyword
winlog.event_data.NewSdSacl0
keyword
winlog.event_data.NewSdSacl1
keyword
winlog.event_data.NewSdSacl2
keyword
winlog.event_data.NewTargetUserName
keyword
winlog.event_data.NewTime
keyword
winlog.event_data.NewUACList
keyword
winlog.event_data.NewUacValue
keyword
winlog.event_data.NominalFrequency
keyword
winlog.event_data.Number
keyword
winlog.event_data.ObjectName
keyword
winlog.event_data.ObjectServer
keyword
winlog.event_data.ObjectType
keyword
winlog.event_data.OemInformation
keyword
winlog.event_data.OldSchemeGuid
keyword
winlog.event_data.OldSd
keyword
winlog.event_data.OldSdDacl0
keyword
winlog.event_data.OldSdDacl1
keyword
winlog.event_data.OldSdDacl2
keyword
winlog.event_data.OldSdSacl0
keyword
winlog.event_data.OldSdSacl1
keyword
winlog.event_data.OldSdSacl2
keyword
winlog.event_data.OldTargetUserName
keyword
winlog.event_data.OldTime
keyword
winlog.event_data.OldUacValue
keyword
winlog.event_data.OriginalFileName
keyword
winlog.event_data.PackageName
keyword
winlog.event_data.ParentProcessName
keyword
winlog.event_data.PasswordHistoryLength
keyword
winlog.event_data.PasswordLastSet
keyword
winlog.event_data.Path
keyword
winlog.event_data.PerformanceImplementation
keyword
winlog.event_data.PreAuthType
keyword
winlog.event_data.PreviousCreationUtcTime
keyword
winlog.event_data.PreviousTime
keyword
winlog.event_data.PrimaryGroupId
keyword
winlog.event_data.PrivilegeList
keyword
winlog.event_data.ProcessId
keyword
winlog.event_data.ProcessName
keyword
winlog.event_data.ProcessPath
keyword
winlog.event_data.ProcessPid
keyword
winlog.event_data.Product
keyword
winlog.event_data.ProfilePath
keyword
winlog.event_data.PuaCount
keyword
winlog.event_data.PuaPolicyId
keyword
winlog.event_data.QfeVersion
keyword
winlog.event_data.Reason
keyword
winlog.event_data.RelativeTargetName
keyword
winlog.event_data.ResourceAttributes
keyword
winlog.event_data.SamAccountName
keyword
winlog.event_data.SchemaVersion
keyword
winlog.event_data.ScriptBlockText
keyword
winlog.event_data.ScriptPath
keyword
winlog.event_data.Service
keyword
winlog.event_data.ServiceAccount
keyword
winlog.event_data.ServiceFileName
keyword
winlog.event_data.ServiceName
keyword
winlog.event_data.ServicePrincipalNames
keyword
winlog.event_data.ServiceSid
keyword
winlog.event_data.ServiceStartType
keyword
winlog.event_data.ServiceType
keyword
winlog.event_data.ServiceVersion
keyword
winlog.event_data.SessionName
keyword
winlog.event_data.ShareLocalPath
keyword
winlog.event_data.ShareName
keyword
winlog.event_data.ShutdownActionType
keyword
winlog.event_data.ShutdownEventCode
keyword
winlog.event_data.ShutdownReason
keyword
winlog.event_data.SidFilteringEnabled
keyword
winlog.event_data.SidHistory
keyword
winlog.event_data.Signature
keyword
winlog.event_data.SignatureStatus
keyword
winlog.event_data.Signed
keyword
winlog.event_data.StartTime
keyword
winlog.event_data.State
keyword
winlog.event_data.Status
keyword
winlog.event_data.StatusDescription
keyword
winlog.event_data.StopTime
keyword
winlog.event_data.SubCategory
keyword
winlog.event_data.SubCategoryGuid
keyword
winlog.event_data.SubCategoryId
keyword
winlog.event_data.SubStatus
keyword
winlog.event_data.SubcategoryGuid
keyword
winlog.event_data.SubcategoryId
keyword
winlog.event_data.SubjectDomainName
keyword
winlog.event_data.SubjectLogonId
keyword
winlog.event_data.SubjectUserName
keyword
winlog.event_data.SubjectUserSid
keyword
winlog.event_data.TSId
keyword
winlog.event_data.TargetDomainName
keyword
winlog.event_data.TargetInfo
keyword
winlog.event_data.TargetLogonGuid
keyword
winlog.event_data.TargetLogonId
keyword
winlog.event_data.TargetServerName
keyword
winlog.event_data.TargetSid
keyword
winlog.event_data.TargetUserName
keyword
winlog.event_data.TargetUserSid
keyword
winlog.event_data.TdoAttributes
keyword
winlog.event_data.TdoDirection
keyword
winlog.event_data.TdoType
keyword
winlog.event_data.TerminalSessionId
keyword
winlog.event_data.TicketEncryptionType
keyword
winlog.event_data.TicketEncryptionTypeDescription
keyword
winlog.event_data.TicketOptions
keyword
winlog.event_data.TicketOptionsDescription
keyword
winlog.event_data.TokenElevationType
keyword
winlog.event_data.TransmittedServices
keyword
winlog.event_data.UserAccountControl
keyword
winlog.event_data.UserParameters
keyword
winlog.event_data.UserPrincipalName
keyword
winlog.event_data.UserSid
keyword
winlog.event_data.UserWorkstations
keyword
winlog.event_data.Version
keyword
winlog.event_data.Workstation
keyword
winlog.event_data.WorkstationName
keyword
winlog.event_data.param1
keyword
winlog.event_data.param2
keyword
winlog.event_data.param3
keyword
winlog.event_data.param4
keyword
winlog.event_data.param5
keyword
winlog.event_data.param6
keyword
winlog.event_data.param7
keyword
winlog.event_data.param8
keyword
winlog.event_id
The event identifier. The value is specific to the source of the event.
keyword
winlog.keywords
The keywords are used to classify an event.
keyword
winlog.level
The event severity. Levels are Critical, Error, Warning and Information, Verbose
keyword
winlog.logon.failure.reason
The reason the logon failed.
keyword
winlog.logon.failure.status
The reason the logon failed. This is textual description based on the value of the hexadecimal Status field.
keyword
winlog.logon.failure.sub_status
Additional information about the logon failure. This is a textual description based on the value of the hexidecimal SubStatus field.
keyword
winlog.logon.id
Logon ID that can be used to associate this logon with other events related to the same logon session.
keyword
winlog.logon.type
Logon type name. This is the descriptive version of the winlog.event_data.LogonType ordinal. This is an enrichment added by the Security module.
keyword
winlog.opcode
The opcode defined in the event. Task and opcode are typically used to identify the location in the application from where the event was logged.
keyword
winlog.outcome
Success or Failure of the event.
keyword
winlog.process.pid
The process_id of the Client Server Runtime Process.
long
winlog.process.thread.id
long
winlog.provider_guid
A globally unique identifier that identifies the provider that logged the event.
keyword
winlog.provider_name
The source of the event log record (the application or service that logged the record).
keyword
winlog.record_id
The record ID of the event log record. The first record written to an event log is record number 1, and other records are numbered sequentially. If the record number reaches the maximum value (2^32^ for the Event Logging API and 2^64^ for the Windows Event Log API), the next record number will be 0.
keyword
winlog.related_activity_id
A globally unique identifier that identifies the activity to which control was transferred to. The related events would then have this identifier as their activity_id identifier.
keyword
winlog.task
The task defined in the event. Task and opcode are typically used to identify the location in the application from where the event was logged. The category used by the Event Logging API (on pre Windows Vista operating systems) is written to this field.
keyword
winlog.time_created
Time event was created
keyword
winlog.trustAttribute
keyword
winlog.trustDirection
keyword
winlog.trustType
keyword
winlog.user.domain
The domain that the account associated with this event is a member of.
keyword
winlog.user.identifier
The Windows security identifier (SID) of the account associated with this event. If Winlogbeat cannot resolve the SID to a name, then the user.name, user.domain, and user.type fields will be omitted from the event. If you discover Winlogbeat not resolving SIDs, review the log for clues as to what the problem may be.
keyword
winlog.user.name
Name of the user associated with this event.
keyword
winlog.user.type
The type of account associated with this event.
keyword
winlog.user_data
The event specific data. This field is mutually exclusive with event_data.
object
winlog.user_data.BackupPath
keyword
winlog.user_data.Channel
keyword
winlog.user_data.SubjectDomainName
keyword
winlog.user_data.SubjectLogonId
keyword
winlog.user_data.SubjectUserName
keyword
winlog.user_data.SubjectUserSid
keyword
winlog.user_data.xml_name
keyword
winlog.version
The version number of the event's definition.
long

Auth

The auth data stream provides auth logs.

Supported operating systems

  • macOS prior to 10.8
  • Linux

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
error.message
Error message.
match_only_text
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.code
Identification code for this event, if one exists. Some event sources use event codes to identify messages unambiguously, regardless of message language or wording adjustments over time. An example of this is the Windows Event ID.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset.
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.original
Raw text message of entire event. Used to demonstrate log integrity or where the full log message (before splitting it up in multiple parts) may be required, e.g. for reindex. This field is not indexed and doc_values are disabled. It cannot be searched, but it can be retrieved from _source. If users wish to override this and index this field, please see Field data types in the Elasticsearch Reference.
keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.provider
Source of the event. Event transports such as Syslog or the Windows Event Log typically mention the source of an event. It can be the name of the software that generated the event (e.g. Sysmon, httpd), or of a subsystem of the operating system (kernel, Microsoft-Windows-Security-Auditing).
keyword
event.sequence
Sequence number of the event. The sequence number is a value published by some event sources, to make the exact ordering of events unambiguous, regardless of the timestamp precision.
long
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
group.id
Unique identifier for the group on the system/platform.
keyword
group.name
Name of the group.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.full
Operating system name, including the version or code name.
keyword
host.os.full.text
Multi-field of host.os.full.
match_only_text
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
message
For log events the message field contains the log message, optimized for viewing in a log viewer. For structured logs without an original message field, other fields can be concatenated to form a human-readable summary of the event. If multiple messages exist, they can be combined into one message.
match_only_text
process.name
Process name. Sometimes called program name or similar.
keyword
process.name.text
Multi-field of process.name.
match_only_text
process.pid
Process id.
long
related.hosts
All hostnames or other host identifiers seen on your event. Example identifiers include FQDNs, domain names, workstation names, or aliases.
keyword
related.ip
All of the IPs seen on your event.
ip
related.user
All the user names or other user identifiers seen on the event.
keyword
source.as.number
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
long
source.as.organization.name
Organization name.
keyword
source.as.organization.name.text
Multi-field of source.as.organization.name.
match_only_text
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.country_name
Country name.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
system.auth.ssh.dropped_ip
The client IP from SSH connections that are open and immediately dropped.
ip
system.auth.ssh.event
The SSH event as found in the logs (Accepted, Invalid, Failed, etc.)
keyword
system.auth.ssh.method
The SSH authentication method. Can be one of "password" or "publickey".
keyword
system.auth.ssh.signature
The signature of the client public key.
keyword
system.auth.sudo.command
The command executed via sudo.
keyword
system.auth.sudo.error
The error message in case the sudo command failed.
keyword
system.auth.sudo.pwd
The current directory where the sudo command is executed.
keyword
system.auth.sudo.tty
The TTY where the sudo command is executed.
keyword
system.auth.sudo.user
The target user to which the sudo command is switching.
keyword
system.auth.useradd.home
The home folder for the new user.
keyword
system.auth.useradd.shell
The default shell for the new user.
keyword
user.effective.name
Short name or login of the user.
keyword
user.effective.name.text
Multi-field of user.effective.name.
match_only_text
user.id
Unique identifier of the user.
keyword
user.name
Short name or login of the user.
keyword
user.name.text
Multi-field of user.name.
match_only_text
version
Operating system version as a raw string.
keyword

syslog

The syslog data stream provides system logs.

Supported operating systems

  • macOS
  • Linux

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.code
Identification code for this event, if one exists. Some event sources use event codes to identify messages unambiguously, regardless of message language or wording adjustments over time. An example of this is the Windows Event ID.
keyword
event.created
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
date
event.dataset
Event dataset.
constant_keyword
event.ingested
Timestamp when an event arrived in the central data store. This is different from @timestamp, which is when the event originally occurred. It's also different from event.created, which is meant to capture the first time an agent saw the event. In normal conditions, assuming no tampering, the timestamps should chronologically look like this: @timestamp < event.created < event.ingested.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.module
Event module
constant_keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.provider
Source of the event. Event transports such as Syslog or the Windows Event Log typically mention the source of an event. It can be the name of the software that generated the event (e.g. Sysmon, httpd), or of a subsystem of the operating system (kernel, Microsoft-Windows-Security-Auditing).
keyword
event.sequence
Sequence number of the event. The sequence number is a value published by some event sources, to make the exact ordering of events unambiguous, regardless of the timestamp precision.
long
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.full
Operating system name, including the version or code name.
keyword
host.os.full.text
Multi-field of host.os.full.
match_only_text
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
message
For log events the message field contains the log message, optimized for viewing in a log viewer. For structured logs without an original message field, other fields can be concatenated to form a human-readable summary of the event. If multiple messages exist, they can be combined into one message.
match_only_text
process.name
Process name. Sometimes called program name or similar.
keyword
process.name.text
Multi-field of process.name.
match_only_text
process.pid
Process id.
long

Metrics reference

Core

The System core data stream provides usage statistics for each CPU core.

Supported operating systems

  • FreeBSD
  • Linux
  • macOS
  • OpenBSD
  • Windows

Permissions

This data should be available without elevated permissions.

Exported fields

FieldDescriptionTypeUnitMetric Type
@timestamp
Event timestamp.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
event.dataset
Event dataset.
constant_keyword
event.module
Event module
constant_keyword
host
A host is defined as a general computing instance. ECS host.* fields should be populated with details about the host on which the event happened, or from which the measurement was taken. Host types include hardware, virtual machines, Docker containers, and Kubernetes nodes.
group
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.full
Operating system name, including the version or code name.
keyword
host.os.full.text
Multi-field of host.os.full.
match_only_text
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
system.core.id
CPU Core number.
keyword
system.core.idle.pct
The percentage of CPU time spent idle.
scaled_float
percent
gauge
system.core.idle.ticks
The amount of CPU time spent idle.
long
counter
system.core.iowait.pct
The percentage of CPU time spent in wait (on disk).
scaled_float
percent
gauge
system.core.iowait.ticks
The amount of CPU time spent in wait (on disk).
long
counter
system.core.irq.pct
The percentage of CPU time spent servicing and handling hardware interrupts.
scaled_float
percent
gauge
system.core.irq.ticks
The amount of CPU time spent servicing and handling hardware interrupts.
long
counter
system.core.nice.pct
The percentage of CPU time spent on low-priority processes.
scaled_float
percent
gauge
system.core.nice.ticks
The amount of CPU time spent on low-priority processes.
long
counter
system.core.softirq.pct
The percentage of CPU time spent servicing and handling software interrupts.
scaled_float
percent
gauge
system.core.softirq.ticks
The amount of CPU time spent servicing and handling software interrupts.
long
counter
system.core.steal.pct
The percentage of CPU time spent in involuntary wait by the virtual CPU while the hypervisor was servicing another processor. Available only on Unix.
scaled_float
percent
gauge
system.core.steal.ticks
The amount of CPU time spent in involuntary wait by the virtual CPU while the hypervisor was servicing another processor. Available only on Unix.
long
counter
system.core.system.pct
The percentage of CPU time spent in kernel space.
scaled_float
percent
gauge
system.core.system.ticks
The amount of CPU time spent in kernel space.
long
counter
system.core.user.pct
The percentage of CPU time spent in user space.
scaled_float
percent
gauge
system.core.user.ticks
The amount of CPU time spent in user space.
long
counter

CPU

The System cpu data stream provides CPU statistics.

Supported operating systems

  • FreeBSD
  • Linux
  • macOS
  • OpenBSD
  • Windows

Permissions

This data should be available without elevated permissions.

Exported fields

FieldDescriptionTypeUnitMetric Type
@timestamp
Event timestamp.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
event.dataset
Event dataset.
constant_keyword
event.module
Event module
constant_keyword
host
A host is defined as a general computing instance. ECS host.* fields should be populated with details about the host on which the event happened, or from which the measurement was taken. Host types include hardware, virtual machines, Docker containers, and Kubernetes nodes.
group
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.cpu.pct
Percent CPU used. This value is normalized by the number of CPU cores and it ranges from 0 to 1.
scaled_float
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.full
Operating system name, including the version or code name.
keyword
host.os.full.text
Multi-field of host.os.full.
match_only_text
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
system.cpu.cores
The number of CPU cores present on the host. The non-normalized percentages will have a maximum value of 100% \* cores. The normalized percentages already take this value into account and have a maximum value of 100%.
long
gauge
system.cpu.idle.norm.pct
The percentage of CPU time spent idle.
scaled_float
percent
gauge
system.cpu.idle.pct
The percentage of CPU time spent idle.
scaled_float
percent
gauge
system.cpu.idle.ticks
The amount of CPU time spent idle.
long
counter
system.cpu.iowait.norm.pct
The percentage of CPU time spent in wait (on disk).
scaled_float
percent
gauge
system.cpu.iowait.pct
The percentage of CPU time spent in wait (on disk).
scaled_float
percent
gauge
system.cpu.iowait.ticks
The amount of CPU time spent in wait (on disk).
long
counter
system.cpu.irq.norm.pct
The percentage of CPU time spent servicing and handling hardware interrupts.
scaled_float
percent
gauge
system.cpu.irq.pct
The percentage of CPU time spent servicing and handling hardware interrupts.
scaled_float
percent
gauge
system.cpu.irq.ticks
The amount of CPU time spent servicing and handling hardware interrupts.
long
counter
system.cpu.nice.norm.pct
The percentage of CPU time spent on low-priority processes.
scaled_float
percent
gauge
system.cpu.nice.pct
The percentage of CPU time spent on low-priority processes.
scaled_float
percent
gauge
system.cpu.nice.ticks
The amount of CPU time spent on low-priority processes.
long
counter
system.cpu.softirq.norm.pct
The percentage of CPU time spent servicing and handling software interrupts.
scaled_float
percent
gauge
system.cpu.softirq.pct
The percentage of CPU time spent servicing and handling software interrupts.
scaled_float
percent
gauge
system.cpu.softirq.ticks
The amount of CPU time spent servicing and handling software interrupts.
long
counter
system.cpu.steal.norm.pct
The percentage of CPU time spent in involuntary wait by the virtual CPU while the hypervisor was servicing another processor. Available only on Unix.
scaled_float
percent
gauge
system.cpu.steal.pct
The percentage of CPU time spent in involuntary wait by the virtual CPU while the hypervisor was servicing another processor. Available only on Unix.
scaled_float
percent
gauge
system.cpu.steal.ticks
The amount of CPU time spent in involuntary wait by the virtual CPU while the hypervisor was servicing another processor. Available only on Unix.
long
counter
system.cpu.system.norm.pct
The percentage of CPU time spent in kernel space.
scaled_float
percent
gauge
system.cpu.system.pct
The percentage of CPU time spent in kernel space.
scaled_float
percent
gauge
system.cpu.system.ticks
The amount of CPU time spent in kernel space.
long
system.cpu.total.norm.pct
The percentage of CPU time in states other than Idle and IOWait, normalised by the number of cores.
scaled_float
percent
gauge
system.cpu.total.pct
The percentage of CPU time spent in states other than Idle and IOWait.
scaled_float
percent
gauge
system.cpu.user.norm.pct
The percentage of CPU time spent in user space.
scaled_float
percent
gauge
system.cpu.user.pct
The percentage of CPU time spent in user space. On multi-core systems, you can have percentages that are greater than 100%. For example, if 3 cores are at 60% use, then the system.cpu.user.pct will be 180%.
scaled_float
percent
gauge
system.cpu.user.ticks
The amount of CPU time spent in user space.
long
counter

Disk IO

The System diskio data stream provides disk IO metrics collected from the operating system. One event is created for each disk mounted on the system.

Supported operating systems

  • Linux
  • macOS (requires 10.10+)
  • Windows
  • FreeBSD (amd64)

Permissions

This data should be available without elevated permissions.

Exported fields

FieldDescriptionTypeUnitMetric Type
@timestamp
Event timestamp.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
event.dataset
Event dataset.
constant_keyword
event.module
Event module
constant_keyword
host
A host is defined as a general computing instance. ECS host.* fields should be populated with details about the host on which the event happened, or from which the measurement was taken. Host types include hardware, virtual machines, Docker containers, and Kubernetes nodes.
group
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.disk.read.bytes
The total number of bytes read successfully in a given period of time.
scaled_float
byte
gauge
host.disk.write.bytes
The total number of bytes write successfully in a given period of time.
scaled_float
byte
gauge
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.full
Operating system name, including the version or code name.
keyword
host.os.full.text
Multi-field of host.os.full.
match_only_text
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
system.diskio.io.time
The total number of of milliseconds spent doing I/Os.
long
counter
system.diskio.iostat.await
The average time spent for requests issued to the device to be served.
float
gauge
system.diskio.iostat.busy
Percentage of CPU time during which I/O requests were issued to the device (bandwidth utilization for the device). Device saturation occurs when this value is close to 100%.
float
gauge
system.diskio.iostat.queue.avg_size
The average queue length of the requests that were issued to the device.
float
byte
gauge
system.diskio.iostat.read.await
The average time spent for read requests issued to the device to be served.
float
gauge
system.diskio.iostat.read.per_sec.bytes
The number of Bytes read from the device per second.
float
gauge
system.diskio.iostat.read.request.merges_per_sec
The number of read requests merged per second that were queued to the device.
float
gauge
system.diskio.iostat.read.request.per_sec
The number of read requests that were issued to the device per second
float
gauge
system.diskio.iostat.request.avg_size
The average size (in bytes) of the requests that were issued to the device.
float
byte
gauge
system.diskio.iostat.service_time
The average service time (in milliseconds) for I/O requests that were issued to the device.
float
ms
gauge
system.diskio.iostat.write.await
The average time spent for write requests issued to the device to be served.
float
gauge
system.diskio.iostat.write.per_sec.bytes
The number of Bytes write from the device per second.
float
gauge
system.diskio.iostat.write.request.merges_per_sec
The number of write requests merged per second that were queued to the device.
float
gauge
system.diskio.iostat.write.request.per_sec
The number of write requests that were issued to the device per second
float
gauge
system.diskio.name
The disk name.
keyword
system.diskio.read.bytes
The total number of bytes read successfully. On Linux this is the number of sectors read multiplied by an assumed sector size of 512.
long
byte
counter
system.diskio.read.count
The total number of reads completed successfully.
long
counter
system.diskio.read.time
The total number of milliseconds spent by all reads.
long
counter
system.diskio.serial_number
The disk's serial number. This may not be provided by all operating systems.
keyword
system.diskio.write.bytes
The total number of bytes written successfully. On Linux this is the number of sectors written multiplied by an assumed sector size of 512.
long
byte
counter
system.diskio.write.count
The total number of writes completed successfully.
long
counter
system.diskio.write.time
The total number of milliseconds spent by all writes.
long
counter

Filesystem

The System filesystem data stream provides file system statistics. For each file system, one document is provided.

Supported operating systems

  • FreeBSD
  • Linux
  • macOS
  • OpenBSD
  • Windows

Permissions

This data should be available without elevated permissions.

Exported fields

FieldDescriptionTypeUnitMetric Type
@timestamp
Event timestamp.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
event.dataset
Event dataset.
constant_keyword
event.module
Event module
constant_keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
system.filesystem.available
The disk space available to an unprivileged user in bytes.
long
byte
gauge
system.filesystem.device_name
The disk name. For example: /dev/disk1
keyword
system.filesystem.files
The total number of file nodes in the file system.
long
gauge
system.filesystem.free
The disk space available in bytes.
long
byte
gauge
system.filesystem.free_files
The number of free file nodes in the file system.
long
gauge
system.filesystem.mount_point
The mounting point. For example: /
keyword
system.filesystem.total
The total disk space in bytes.
long
byte
gauge
system.filesystem.type
The disk type. For example: ext4
keyword
system.filesystem.used.bytes
The used disk space in bytes.
long
byte
gauge
system.filesystem.used.pct
The percentage of used disk space.
scaled_float
percent
gauge

Fsstat

The System fsstat data stream provides overall file system statistics.

Supported operating systems

  • FreeBSD
  • Linux
  • macOS
  • OpenBSD
  • Windows

Permissions

This data should be available without elevated permissions.

Exported fields

FieldDescriptionTypeUnitMetric Type
@timestamp
Event timestamp.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
event.dataset
Event dataset.
constant_keyword
event.module
Event module
constant_keyword
host
A host is defined as a general computing instance. ECS host.* fields should be populated with details about the host on which the event happened, or from which the measurement was taken. Host types include hardware, virtual machines, Docker containers, and Kubernetes nodes.
group
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.full
Operating system name, including the version or code name.
keyword
host.os.full.text
Multi-field of host.os.full.
match_only_text
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
system.fsstat.count
Number of file systems found.
long
gauge
system.fsstat.total_files
Total number of files.
long
gauge
system.fsstat.total_size.free
Total free space.
long
byte
gauge
system.fsstat.total_size.total
Total space (used plus free).
long
byte
gauge
system.fsstat.total_size.used
Total used space.
long
byte
gauge

Load

The System load data stream provides load statistics.

Supported operating systems

  • FreeBSD
  • Linux
  • macOS
  • OpenBSD

Permissions

This data should be available without elevated permissions.

Exported fields

FieldDescriptionTypeMetric Type
@timestamp
Event timestamp.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
event.dataset
Event dataset.
constant_keyword
event.module
Event module
constant_keyword
host
A host is defined as a general computing instance. ECS host.* fields should be populated with details about the host on which the event happened, or from which the measurement was taken. Host types include hardware, virtual machines, Docker containers, and Kubernetes nodes.
group
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.full
Operating system name, including the version or code name.
keyword
host.os.full.text
Multi-field of host.os.full.
match_only_text
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
system.load.1
Load average for the last minute.
scaled_float
gauge
system.load.15
Load average for the last 15 minutes.
scaled_float
gauge
system.load.5
Load average for the last 5 minutes.
scaled_float
gauge
system.load.cores
The number of CPU cores present on the host.
long
gauge
system.load.norm.1
Load for the last minute divided by the number of cores.
scaled_float
gauge
system.load.norm.15
Load for the last 15 minutes divided by the number of cores.
scaled_float
gauge
system.load.norm.5
Load for the last 5 minutes divided by the number of cores.
scaled_float
gauge

Memory

The System memory data stream provides memory statistics.

Supported operating systems

  • FreeBSD
  • Linux
  • macOS
  • OpenBSD
  • Windows

Permissions

This data should be available without elevated permissions.

Exported fields

FieldDescriptionTypeUnitMetric Type
@timestamp
Event timestamp.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
event.dataset
Event dataset.
constant_keyword
event.module
Event module
constant_keyword
host
A host is defined as a general computing instance. ECS host.* fields should be populated with details about the host on which the event happened, or from which the measurement was taken. Host types include hardware, virtual machines, Docker containers, and Kubernetes nodes.
group
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.full
Operating system name, including the version or code name.
keyword
host.os.full.text
Multi-field of host.os.full.
match_only_text
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
match_only_text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
system.memory.actual.free
Actual free memory in bytes. It is calculated based on the OS. On Linux this value will be MemAvailable from /proc/meminfo, or calculated from free memory plus caches and buffers if /proc/meminfo is not available. On OSX it is a sum of free memory and the inactive memory. On Windows, it is equal to system.memory.free.
long
byte
gauge
system.memory.actual.used.bytes
Actual used memory in bytes. It represents the difference between the total and the available memory. The available memory depends on the OS. For more details, please check system.actual.free.
long
byte
gauge
system.memory.actual.used.pct
The percentage of actual used memory.
scaled_float
percent
gauge
system.memory.free
The total amount of free memory in bytes. This value does not include memory consumed by system caches and buffers (see system.memory.actual.free).
long
byte
gauge
system.memory.hugepages.default_size
Default size for huge pages.
long
gauge
system.memory.hugepages.free
Number of available huge pages in the pool.
long
gauge
system.memory.hugepages.reserved
Number of reserved but not allocated huge pages in the pool.
long
gauge
system.memory.hugepages.surplus
Number of overcommited huge pages.
long
gauge
system.memory.hugepages.swap.out.fallback
Count of huge pages that must be split before swapout
long
gauge
system.memory.hugepages.swap.out.pages
pages swapped out
long
gauge
system.memory.hugepages.total
Number of huge pages in the pool.
long
gauge
system.memory.hugepages.used.bytes
Memory used in allocated huge pages.
long
byte
gauge
system.memory.hugepages.used.pct
Percentage of huge pages used.
long
percent
gauge
system.memory.page_stats.direct_efficiency.pct
direct reclaim efficiency percentage. A lower percentage indicates the system is struggling to reclaim memory.
scaled_float
percent
gauge
system.memory.page_stats.kswapd_efficiency.pct
kswapd reclaim efficiency percentage. A lower percentage indicates the system is struggling to reclaim memory.
scaled_float
percent
gauge
system.memory.page_stats.pgfree.pages
pages freed by the system
long
counter
system.memory.page_stats.pgscan_direct.pages
pages scanned directly
long
counter
system.memory.page_stats.pgscan_kswapd.pages
pages scanned by kswapd
long
counter
system.memory.page_stats.pgsteal_direct.pages
number of pages reclaimed directly
long
counter
system.memory.page_stats.pgsteal_kswapd.pages
number of pages reclaimed by kswapd
long
counter
system.memory.swap.free
Available swap memory.
long
byte
gauge
system.memory.swap.in.pages
count of pages swapped in
long
gauge
system.memory.swap.out.pages
count of pages swapped out
long
counter
system.memory.swap.readahead.cached
swap readahead cache hits
long
system.memory.swap.readahead.pages
swap readahead pages
long
counter
system.memory.swap.total
Total swap memory.
long
byte
gauge
system.memory.swap.used.bytes
Used swap memory.
long
byte
gauge
system.memory.swap.used.pct
The percentage of used swap memory.
scaled_float
percent
gauge
system.memory.total
Total memory.
long
byte
gauge
system.memory.used.bytes
Used memory.
long
byte
gauge
system.memory.used.pct
The percentage of used memory.
scaled_float
percent
gauge

Network

The System network data stream provides network IO metrics collected from the operating system. One event is created for each network interface.

Supported operating systems

  • FreeBSD
  • Linux
  • macOS
  • Windows

Permissions

This data should be available without elevated permissions.

Exported fields

FieldDescriptionTypeUnitMetric Type
@timestamp
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
event.dataset
Event dataset.
constant_keyword
event.module
Event module
constant_keyword
group
The group fields are meant to represent groups that are relevant to the event.
group
group.id
Unique identifier for the group on the system/platform.
keyword
group.name
Name of the group.
keyword
host
A host is defined as a general computing instance. ECS host.* fields should be populated with details about the host on which the event happened, or from which the measurement was taken. Host types include hardware, virtual machines, Docker containers, and Kubernetes nodes.
group
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.network.in.bytes
The number of bytes received on all network interfaces by the host in a given period of time.
scaled_float
byte
counter
host.network.in.packets
The number of packets received on all network interfaces by the host in a given period of time.
scaled_float
counter
host.network.out.bytes
The number of bytes sent out on all network interfaces by the host in a given period of time.
long
host.network.out.packets
The number of packets sent out on all network interfaces by the host in a given period of time.
long
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
message
For log events the message field contains the log message, optimized for viewing in a log viewer. For structured logs without an original message field, other fields can be concatenated to form a human-readable summary of the event. If multiple messages exist, they can be combined into one message.
match_only_text
process
These fields contain information about a process. These fields can help you correlate metrics information with a process id/name from a log message. The process.pid often stays in the metric itself and is copied to the global field for correlation.
group
process.name
Process name. Sometimes called program name or similar.
keyword
process.name.text
Multi-field of process.name.
match_only_text
process.pid
Process id.
long
source
Source fields capture details about the sender of a network exchange/packet. These fields are populated from a network event, packet, or other event containing details of a network transaction. Source fields are usually populated in conjunction with destination fields. The source and destination fields are considered the baseline and should always be filled if an event contains source and destination details from a network transaction. If the event also contains identification of the client and server roles, then the client and server fields should also be populated.
group
source.geo.city_name
City name.
keyword
source.geo.continent_name
Name of the continent.
keyword
source.geo.country_iso_code
Country ISO code.
keyword
source.geo.location
Longitude and latitude.
geo_point
source.geo.region_iso_code
Region ISO code.
keyword
source.geo.region_name
Region name.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
system.network.in.bytes
The number of bytes received.
long
byte
counter
system.network.in.dropped
The number of incoming packets that were dropped.
long
counter
system.network.in.errors
The number of errors while receiving.
long
counter
system.network.in.packets
The number or packets received.
long
counter
system.network.name
The network interface name.
keyword
system.network.out.bytes
The number of bytes sent.
long
byte
counter
system.network.out.dropped
The number of outgoing packets that were dropped. This value is always 0 on Darwin and BSD because it is not reported by the operating system.
long
counter
system.network.out.errors
The number of errors while sending.
long
counter
system.network.out.packets
The number of packets sent.
long
counter
user
The user fields describe information about the user that is relevant to the event. Fields can have one entry or multiple entries. If a user has more than one id, provide an array that includes all of them.
group
user.id
Unique identifier of the user.
keyword
user.name
Short name or login of the user.
keyword
user.name.text
Multi-field of user.name.
match_only_text

Process

The System process data stream provides process statistics. One document is provided for each process.

Supported operating systems

  • FreeBSD
  • Linux
  • macOS
  • Windows

Permissions

Process execution data should be available for an authorized user. If running as less privileged user, it may not be able to read process data belonging to other users.

Exported fields

FieldDescriptionTypeUnitMetric Type
@timestamp
Event timestamp.
date
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.dataset
Event dataset.
constant_keyword
event.module
Event module
constant_keyword
host
A host is defined as a general computing instance. ECS host.* fields should be populated with details about the host on which the event happened, or from which the measurement was taken. Host types include hardware, virtual machines, Docker containers, and Kubernetes nodes.
group
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host MAC addresses. The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.full
Operating system name, including the version or code name.
keyword
host.os.full.text
Multi-field of host.os.full.
match_only_text
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
process
These fields contain information about a process. These fields can help you correlate metrics information with a process id/name from a log message. The process.pid often stays in the metric itself and is copied to the global field for correlation.
group
process.args
Array of process arguments, starting with the absolute path to the executable. May be filtered to protect sensitive information.
keyword