- Elastic integrations
- Integrations quick reference
- 1Password
- Abnormal Security
- ActiveMQ
- Active Directory Entity Analytics
- Airflow
- Akamai
- Apache
- API (custom)
- Arbor Peakflow SP Logs
- Arista NG Firewall
- Atlassian
- Auditd
- Auth0
- authentik
- AWS
- Amazon CloudFront
- Amazon DynamoDB
- Amazon EBS
- Amazon EC2
- Amazon ECS
- Amazon EMR
- AWS API Gateway
- Amazon GuardDuty
- AWS Health
- Amazon Kinesis Data Firehose
- Amazon Kinesis Data Stream
- Amazon Managed Streaming for Apache Kafka (MSK)
- Amazon NAT Gateway
- Amazon RDS
- Amazon Redshift
- Amazon S3
- Amazon S3 Storage Lens
- Amazon Security Lake
- Amazon SNS
- Amazon SQS
- Amazon VPC
- Amazon VPN
- AWS Bedrock
- AWS Billing
- AWS CloudTrail
- AWS CloudWatch
- AWS ELB
- AWS Fargate
- AWS Inspector
- AWS Lambda
- AWS Logs (custom)
- AWS Network Firewall
- AWS Route 53
- AWS Security Hub
- AWS Transit Gateway
- AWS Usage
- AWS WAF
- Azure
- Activity logs
- App Service
- Application Gateway
- Application Insights metrics
- Application Insights metrics overview
- Application State Insights metrics
- Azure logs (v2 preview)
- Azure OpenAI
- Billing metrics
- Container instance metrics
- Container registry metrics
- Container service metrics
- Custom Azure Logs
- Custom Blob Storage Input
- Database Account metrics
- Event Hub input
- Firewall logs
- Frontdoor
- Functions
- Microsoft Entra ID
- Monitor metrics
- Network Watcher VNet
- Network Watcher NSG
- Platform logs
- Resource metrics
- Spring Cloud logs
- Storage Account metrics
- Virtual machines metrics
- Virtual machines scaleset metrics
- Barracuda
- BitDefender
- Bitwarden
- blacklens.io
- Blue Coat Director Logs
- BBOT (Bighuge BLS OSINT Tool)
- Box Events
- Bravura Monitor
- Broadcom ProxySG
- Canva
- Cassandra
- CEL Custom API
- Ceph
- Check Point
- Cilium Tetragon
- CISA Known Exploited Vulnerabilities
- Cisco
- Cisco Meraki Metrics
- Citrix
- Claroty CTD
- Cloudflare
- Cloud Asset Inventory
- CockroachDB Metrics
- Common Event Format (CEF)
- Containerd
- CoreDNS
- Corelight
- Couchbase
- CouchDB
- Cribl
- CrowdStrike
- Cyberark
- Cybereason
- CylanceProtect Logs
- Custom Websocket logs
- Darktrace
- Data Exfiltration Detection
- DGA
- Digital Guardian
- Docker
- Elastic APM
- Elastic Fleet Server
- Elastic Security
- Elastic Stack monitoring
- Elasticsearch Service Billing
- Envoy Proxy
- ESET PROTECT
- ESET Threat Intelligence
- etcd
- Falco
- F5
- File Integrity Monitoring
- FireEye Network Security
- First EPSS
- Forcepoint Web Security
- ForgeRock
- Fortinet
- Gigamon
- GitHub
- GitLab
- Golang
- Google Cloud
- Custom GCS Input
- GCP
- GCP Audit logs
- GCP Billing metrics
- GCP Cloud Run metrics
- GCP CloudSQL metrics
- GCP Compute metrics
- GCP Dataproc metrics
- GCP DNS logs
- GCP Firestore metrics
- GCP Firewall logs
- GCP GKE metrics
- GCP Load Balancing metrics
- GCP Metrics Input
- GCP PubSub logs (custom)
- GCP PubSub metrics
- GCP Redis metrics
- GCP Security Command Center
- GCP Storage metrics
- GCP VPC Flow logs
- GCP Vertex AI
- GoFlow2 logs
- Hadoop
- HAProxy
- Hashicorp Vault
- HTTP Endpoint logs (custom)
- IBM MQ
- IIS
- Imperva
- InfluxDb
- Infoblox
- Iptables
- Istio
- Jamf Compliance Reporter
- Jamf Pro
- Jamf Protect
- Jolokia Input
- Journald logs (custom)
- JumpCloud
- Kafka
- Keycloak
- Kubernetes
- LastPass
- Lateral Movement Detection
- Linux Metrics
- Living off the Land Attack Detection
- Logs (custom)
- Lumos
- Lyve Cloud
- Mattermost
- Memcached
- Menlo Security
- Microsoft
- Microsoft 365
- Microsoft Defender for Cloud
- Microsoft Defender for Endpoint
- Microsoft DHCP
- Microsoft DNS Server
- Microsoft Entra ID Entity Analytics
- Microsoft Exchange Online Message Trace
- Microsoft Exchange Server
- Microsoft Graph Activity Logs
- Microsoft M365 Defender
- Microsoft Office 365 Metrics Integration
- Microsoft Sentinel
- Microsoft SQL Server
- Mimecast
- ModSecurity Audit
- MongoDB
- MongoDB Atlas
- MySQL
- Nagios XI
- NATS
- NetFlow Records
- Netskope
- Network Beaconing Identification
- Network Packet Capture
- Nginx
- Okta
- Oracle
- OpenCanary
- Osquery
- Palo Alto
- pfSense
- PHP-FPM
- PingOne
- PingFederate
- Pleasant Password Server
- PostgreSQL
- Prometheus
- Proofpoint TAP
- Proofpoint On Demand
- Pulse Connect Secure
- Qualys VMDR
- QNAP NAS
- RabbitMQ Logs
- Radware DefensePro Logs
- Rapid7
- Redis
- Rubrik RSC Metrics Integration
- Salesforce
- SentinelOne
- ServiceNow
- Slack Logs
- Snort
- Snyk
- SonicWall Firewall
- Sophos
- Spring Boot
- SpyCloud Enterprise Protection
- SQL Input
- Squid Logs
- SRX
- STAN
- Statsd Input
- Sublime Security
- Suricata
- StormShield SNS
- Symantec
- Symantec Endpoint Security
- Sysmon for Linux
- Sysdig
- Syslog Router Integration
- System
- System Audit
- Tanium
- TCP Logs (custom)
- Teleport
- Tenable
- Threat intelligence
- ThreatConnect
- Threat Map
- Thycotic Secret Server
- Tines
- Traefik
- Trellix
- Trend Micro
- TYCHON Agentless
- UDP Logs (custom)
- Universal Profiling
- Vectra Detect
- VMware
- WatchGuard Firebox
- WebSphere Application Server
- Windows
- Wiz
- Zeek
- ZeroFox
- Zero Networks
- ZooKeeper Metrics
- Zoom
- Zscaler
Prometheus Integration
editPrometheus Integration
editVersion |
1.21.0 (View all) |
Compatible Kibana version(s) |
8.16.0 or higher |
Supported Serverless project types |
Security |
Subscription level |
Basic |
Level of support |
Elastic |
This integration can collect metrics from:
Metrics
editPrometheus Exporters (Collectors)
editThe Prometheus integration collector
dataset connects to the Prometheus server and pulls metrics using either the /metrics
endpoint or the Prometheus Federation API.
Scraping from a Prometheus exporter
editTo scrape metrics from a Prometheus exporter, configure the hosts
setting to it. The path
to retrieve the metrics from (/metrics
by default) can be configured with Metrics Path.
Histograms and types
editUse Types
parameter (default: true) enables a different layout for metrics storage, leveraging Elasticsearch
types, including histograms.
Rate Counters
parameter (default: true) enables calculating a rate out of Prometheus counters. When enabled, Elastic Agent stores
the counter increment since the last collection. This metric should make some aggregations easier and with better
performance. This parameter can only be enabled in combination with Use Types
.
When Use Types
and Rate Counters
are enabled, metrics are stored like this:
{ "_index": ".ds-metrics-prometheus.collector-default-000001", "_id": "JlK9AHMBeyDc0b9rCwVA", "_version": 1, "_score": null, "_source": { "@timestamp": "2020-06-29T15:40:55.028Z", "prometheus": { "labels": { "slice": "inner_eval", "instance": "localhost:9090", "job": "prometheus" }, "prometheus_engine_query_duration_seconds_sum": { "counter": 0.002697546, "rate": 0.00006945900000000001 }, "prometheus_engine_query_duration_seconds_count": { "rate": 1, "counter": 37 } }, "dataset": { "type": "metrics", "name": "prometheus.collector", "namespace": "default" }, "agent": { "ephemeral_id": "98420e91-ee6d-4883-8ad3-02fa8d47f5c1", "id": "9fc3e975-6789-4738-a11a-ba7108b0a92c", "name": "minikube", "type": "metricbeat", "version": "8.0.0" }, "ecs": { "version": "1.5.0" }, "event": { "module": "prometheus", "duration": 15397122, "dataset": "prometheus.collector" }, "metricset": { "period": 10000, "name": "collector" }, "service": { "address": "localhost:9090", "type": "prometheus" }, "stream": { "namespace": "default", "type": "metrics", "dataset": "prometheus.collector" }, "host": {}, }, "fields": { "@timestamp": [ "2020-06-29T15:40:55.028Z" ] }, "highlight": { "event.dataset": [ "@kibana-highlighted-field@prometheus.collector@/kibana-highlighted-field@" ] }, "sort": [ 1593445255028 ] }
Metrics count
editThe Prometheus integration’s collector
dataset provides a Metrics Count
parameter, which is disabled by default. When enabled, it counts the total number of Prometheus metrics within each Elasticsearch document. This count is stored in a field called metrics_count
and its value is calculated prior to any enrichments by Ingest Pipelines or Agent Processors, ensuring consistency. This field name is reserved for internal use and must not be altered using Agent Processors or Ingest Pipelines.
Scraping all metrics from a Prometheus server
editWe recommend using the Remote Write dataset for this, and make Prometheus push metrics to Agent.
Filtering metrics
editIn order to filter out/in metrics one can make use of Metrics Filters Include
, Metrics Filters Exclude
settings:
Metrics Filters Include: ["node_filesystem_*"] Metrics Filters Exclude: ["node_filesystem_device_*"]
The configuration above will include only metrics that match node_filesystem_*
pattern and do not match node_filesystem_device_*
.
To keep only specific metrics, anchor the start and the end of the regexp of each metric:
- the caret ^ matches the beginning of a text or line,
- the dollar sign $ matches the end of a text.
Metrics Filters Include: ["^node_network_net_dev_group$", "^node_network_up$"]
Example
An example event for collector
looks as following:
{ "@timestamp": "2024-08-20T08:38:11.185Z", "agent": { "ephemeral_id": "b9fad797-a22c-47be-b2f4-44c0a89b6c25", "id": "9822f27e-ae7c-4cee-98af-094356f8bf91", "name": "elastic-agent-35087", "type": "metricbeat", "version": "8.14.0" }, "data_stream": { "dataset": "prometheus.collector", "namespace": "52976", "type": "metrics" }, "ecs": { "version": "8.0.0" }, "elastic_agent": { "id": "9822f27e-ae7c-4cee-98af-094356f8bf91", "snapshot": false, "version": "8.14.0" }, "event": { "agent_id_status": "verified", "dataset": "prometheus.collector", "duration": 1958134070, "ingested": "2024-08-20T08:38:13Z", "module": "prometheus" }, "host": { "architecture": "x86_64", "containerized": true, "hostname": "elastic-agent-35087", "id": "345c85cf1fe945e2b19719b370c09a48", "ip": [ "192.168.241.8", "192.168.242.2" ], "mac": [ "02-42-C0-A8-F1-08", "02-42-C0-A8-F2-02" ], "name": "elastic-agent-35087", "os": { "codename": "focal", "family": "debian", "kernel": "5.4.0-189-generic", "name": "Ubuntu", "platform": "ubuntu", "type": "linux", "version": "20.04.6 LTS (Focal Fossa)" } }, "metricset": { "name": "collector", "period": 10000 }, "prometheus": { "labels": { "dialer_name": "alertmanager", "instance": "svc-prometheus:9090", "job": "prometheus" }, "labels_fingerprint": "jn10I8M3W8CSQq1v0nbhVyegvgQ=", "net_conntrack_dialer_conn_attempted_total": { "counter": 0, "rate": 0 }, "net_conntrack_dialer_conn_closed_total": { "counter": 0, "rate": 0 }, "net_conntrack_dialer_conn_established_total": { "counter": 0, "rate": 0 } }, "service": { "address": "http://svc-prometheus:9090/metrics", "type": "prometheus" } }
The fields reported are:
ECS Field Reference
Please refer to the following document for detailed information on ECS fields.
Exported fields
Field | Description | Type | Metric Type |
---|---|---|---|
@timestamp |
Event timestamp. |
date |
|
agent.id |
Unique identifier of this agent (if one exists). Example: For Beats this would be beat.id. |
keyword |
|
cloud.account.id |
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier. |
keyword |
|
cloud.availability_zone |
Availability zone in which this host is running. |
keyword |
|
cloud.image.id |
Image ID for the cloud instance. |
keyword |
|
cloud.instance.id |
Instance ID of the host machine. |
keyword |
|
cloud.provider |
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean. |
keyword |
|
cloud.region |
Region in which this host is running. |
keyword |
|
container.id |
Unique container id. |
keyword |
|
data_stream.dataset |
Data stream dataset. |
constant_keyword |
|
data_stream.namespace |
Data stream namespace. |
constant_keyword |
|
data_stream.type |
Data stream type. |
constant_keyword |
|
event.module |
Event module. |
constant_keyword |
|
host.containerized |
If the host is a container. |
boolean |
|
host.name |
Name of the host. It can contain what |
keyword |
|
host.os.build |
OS build information. |
keyword |
|
host.os.codename |
OS codename, if any. |
keyword |
|
metrics_count |
Total count of Prometheus metrics within the Elasticsearch document. This value is calculated prior to any enrichments by Ingest Pipelines or Agent Processors, ensuring consistency. This field name is reserved for internal use and must not be altered using Agent Processors or Ingest Pipelines. |
long |
|
prometheus.*.counter |
Prometheus counter metric |
object |
counter |
prometheus.*.histogram |
Prometheus histogram metric |
object |
|
prometheus.*.rate |
Prometheus rated counter metric |
object |
gauge |
prometheus.*.value |
Prometheus gauge metric |
object |
gauge |
prometheus.labels.* |
Prometheus metric labels. |
keyword |
|
prometheus.labels_fingerprint |
Autogenerated ID representing the fingerprint of labels object and includes query name. |
keyword |
|
prometheus.metrics.* |
Prometheus metric |
object |
gauge |
service.address |
Address where data about this service was collected from. This should be a URI, network address (ipv4:port or [ipv6]:port) or a resource path (sockets). |
keyword |
Prometheus Server Remote-Write
editThe Prometheus remote_write
can receive metrics from a Prometheus server that
has configured remote_write
setting accordingly, for instance:
remote_write: - url: "http://localhost:9201/write"
In Kuberneter additionally should be created a Service resource:
--- apiVersion: v1 kind: Service metadata: name: elastic-agent namespace: kube-system labels: app: elastic-agent spec: ports: - port: 9201 protocol: TCP targetPort: 9201 selector: app: elastic-agent sessionAffinity: None type: ClusterIP
This Service can be used as a remote_write.url
in Prometheus configuration:
remote_write: - url: "http://elastic-agent.kube-system:9201/write"
In order to assure the health of the whole queue, the following configuration parameters should be considered:
-
max_shards
: Sets the maximum number of parallelism with which Prometheus will try to send samples to Elastic Agent. It is recommended that this setting should be equal to the number of cores of the machine where Elastic Agent runs. Elastic Agent can handle connections in parallel and hence settingmax_shards
to the number of parallelism that Elastic Agent can actually achieve is the optimal queue configuration. -
max_samples_per_send
: Sets the number of samples to batch together for each send. Recommended values are between 100 (default) and 1000. Having a bigger batch can lead to improved throughput and in more efficient storage since Elastic Agent groups metrics with the same labels into same event documents. However this will increase the memory usage of Elastic Agent. -
capacity
: It is recommended to set capacity to 3-5 timesmax_samples_per_send
. Capacity sets the number of samples that are queued in memory per shard, and hence capacity should be high enough so as to be able to covermax_samples_per_send
.
To limit amount of samples that are sent by the Prometheus Server can be used write_relabel_configs
configuration. It is a relabeling, that applies to samples before sending them to the remote endpoint. Example:
remote_write: - url: "http://localhost:9201/write" write_relabel_configs: - source_labels: [job] regex: 'prometheus' action: keep
Metrics sent to the http endpoint will be put by default under the prometheus.
prefix with their labels under prometheus.labels
.
A basic configuration would look like:
host: "localhost" port: "9201"
Also consider using secure settings for the server, configuring the module with TLS/SSL as shown:
host: "localhost" ssl.certificate: "/etc/pki/server/cert.pem" ssl.key: "/etc/pki/server/cert.key" port: "9201"
and on Prometheus side:
remote_write: - url: "https://localhost:9201/write" tls_config: cert_file: "/etc/prometheus/my_key.pem" key_file: "/etc/prometheus/my_key.key" # Disable validation of the server certificate. #insecure_skip_verify: true
Example
An example event for remote_write
looks as following:
{ "@timestamp": "2022-09-22T12:23:35.757Z", "agent": { "ephemeral_id": "5c3d912b-9bf3-4747-b784-1f7c275a5979", "id": "af0df4c2-33b7-41fd-8eb5-573376996db2", "name": "kind-control-plane", "type": "metricbeat", "version": "8.4.0" }, "data_stream": { "dataset": "prometheus.remote_write", "namespace": "default", "type": "metrics" }, "ecs": { "version": "8.11.0" }, "elastic_agent": { "id": "af0df4c2-33b7-41fd-8eb5-573376996db2", "snapshot": true, "version": "8.4.0" }, "event": { "agent_id_status": "verified", "dataset": "prometheus.remote_write", "ingested": "2022-09-22T12:24:16Z", "module": "prometheus" }, "host": {}, "metricset": { "name": "remote_write" }, "prometheus": { "labels": { "app": "prometheus", "app_kubernetes_io_managed_by": "Helm", "chart": "prometheus-15.10.1", "component": "node-exporter", "cpu": "5", "heritage": "Helm", "instance": "172.19.0.2:9100", "job": "kubernetes-service-endpoints", "mode": "user", "namespace": "kube-system", "node": "kind-control-plane", "release": "prometheus-server", "service": "prometheus-server-node-exporter" }, "node_cpu_guest_seconds_total": { "counter": 0, "rate": 0 }, "node_cpu_seconds_total": { "counter": 2284.68, "rate": 0 } }, "service": { "type": "prometheus" } }
The fields reported are:
ECS Field Reference
Please refer to the following document for detailed information on ECS fields.
Exported fields
Field | Description | Type | Metric Type |
---|---|---|---|
@timestamp |
Event timestamp. |
date |
|
agent.id |
Unique identifier of this agent (if one exists). Example: For Beats this would be beat.id. |
keyword |
|
cloud.account.id |
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier. |
keyword |
|
cloud.availability_zone |
Availability zone in which this host is running. |
keyword |
|
cloud.image.id |
Image ID for the cloud instance. |
keyword |
|
cloud.instance.id |
Instance ID of the host machine. |
keyword |
|
cloud.provider |
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean. |
keyword |
|
cloud.region |
Region in which this host is running. |
keyword |
|
container.id |
Unique container id. |
keyword |
|
data_stream.dataset |
Data stream dataset. |
constant_keyword |
|
data_stream.namespace |
Data stream namespace. |
constant_keyword |
|
data_stream.type |
Data stream type. |
constant_keyword |
|
event.module |
Event module. |
constant_keyword |
|
host.containerized |
If the host is a container. |
boolean |
|
host.name |
Name of the host. It can contain what |
keyword |
|
host.os.build |
OS build information. |
keyword |
|
host.os.codename |
OS codename, if any. |
keyword |
|
metrics_count |
Total count of Prometheus metrics within the Elasticsearch document. This value is calculated prior to any enrichments by Ingest Pipelines or Agent Processors, ensuring consistency. This field name is reserved for internal use and must not be altered using Agent Processors or Ingest Pipelines. |
long |
|
prometheus.*.counter |
Prometheus counter metric |
object |
counter |
prometheus.*.histogram |
Prometheus histogram metric |
object |
|
prometheus.*.rate |
Prometheus rated counter metric |
object |
gauge |
prometheus.*.value |
Prometheus gauge metric |
object |
gauge |
prometheus.labels.* |
Prometheus metric labels. |
keyword |
|
prometheus.labels_fingerprint |
Autogenerated ID representing the fingerprint of labels object and includes query name. |
keyword |
|
prometheus.metrics.* |
Prometheus metric |
object |
gauge |
prometheus.metrics_names_fingerprint |
Autogenerated ID representing the fingerprint of the list of metrics names |
keyword |
Histograms and types
edituse_types
parameter (default: true) enables a different layout for metrics storage, leveraging Elasticsearch
types, including histograms.
rate_counters
parameter (default: true) enables calculating a rate out of Prometheus counters. When enabled, Elastic Agent stores
the counter increment since the last collection. This metric should make some aggregations easier and with better
performance. This parameter can only be enabled in combination with use_types
.
period
parameter (default: 60s) configures the timeout of internal cache, which stores counter values in order to calculate rates between consecutive fetches. The parameter will be validated and all values lower than 60sec will be reset to the default value.
Note that by default prometheus pushes data with the interval of 60s (in remote write). In case that prometheus push rate is changed, the period
parameter needs to be configured accordingly.
When use_types
and rate_counters
are enabled, metrics are stored like this:
{ "prometheus": { "labels": { "instance": "172.27.0.2:9090", "job": "prometheus" }, "prometheus_target_interval_length_seconds_count": { "counter": 1, "rate": 0 }, "prometheus_target_interval_length_seconds_sum": { "counter": 15.000401344, "rate": 0 } "prometheus_tsdb_compaction_chunk_range_seconds_bucket": { "histogram": { "values": [50, 300, 1000, 4000, 16000], "counts": [10, 2, 34, 7] } } }, }
Types' patterns
editUnlike collector
metricset, remote_write
receives metrics in raw format from the prometheus server.
In this, the module has to internally use a heuristic in order to identify efficiently the type of each raw metric.
For these purpose some name patterns are used in order to identify the type of each metric.
The default patterns are the following:
-
_total
suffix: the metric is of Counter type -
_sum
suffix: the metric is of Counter type -
_count
suffix: the metric is of Counter type -
_bucket
suffix andle
in labels: the metric is of Histogram type
Everything else is handled as a Gauge. In addition there is no special handling for Summaries so it is expected that Summary’s quantiles are handled as Gauges and Summary’s sum and count as Counters.
Users have the flexibility to add their own patterns using the following configuration:
types_patterns: counter_patterns: ["_my_counter_suffix"] histogram_patterns: ["_my_histogram_suffix"]
The configuration above will consider metrics with names that match _my_counter_suffix
as Counters
and those that match _my_histogram_suffix
(and have le
in their labels) as Histograms.
To match only specific metrics, anchor the start and the end of the regexp of each metric:
-
the caret
^
matches the beginning of a text or line, -
the dollar sign
$
matches the end of a text.
types_patterns: histogram_patterns: ["^my_histogram_metric$"]
Note that when using types_patterns
, the provided patterns have higher priority than the default patterns.
For instance if _histogram_total
is a defined histogram pattern, then a metric like network_bytes_histogram_total
will be handled as a histogram, even if it has the suffix _total
which is a default pattern for counters.
Metrics count
editThe Prometheus integration’s remote_write
dataset provides a Metrics Count
parameter, which is disabled by default. When enabled, it counts the total number of Prometheus metrics within each Elasticsearch document. This count is stored in a field called metrics_count
and its value is calculated prior to any enrichments by Ingest Pipelines or Agent Processors, ensuring consistency. This field name is reserved for internal use and must not be altered using Agent Processors or Ingest Pipelines.
Prometheus Queries (PromQL)
editThe Prometheus query
dataset executes specific Prometheus queries against Promethes Query API.
Instant queries
editThe following configuration performs an instant query for up
metric at a single point in time:
queries: - name: 'up' path: '/api/v1/query' params: query: "up"
More complex PromQL expressions can also be used like the following one which calculates the per-second rate of HTTP requests as measured over the last 5 minutes.
queries: - name: "rate_http_requests_total" path: "/api/v1/query" params: query: "rate(prometheus_http_requests_total[5m])"
Range queries
editThe following example evaluates the expression up
over a 30-second range with a query resolution of 15 seconds:
queries: - name: "up_master" path: "/api/v1/query_range" params: query: "up{node='master01'}" start: "2019-12-20T23:30:30.000Z" end: "2019-12-21T23:31:00.000Z" step: 15s
Example
An example event for query
looks as following:
{ "@timestamp": "2024-08-20T08:39:07.000Z", "agent": { "ephemeral_id": "cc18c40d-dcb8-4192-aede-e988d68c376c", "id": "842b000b-c1bd-4608-bbd8-2a1849afc2f5", "name": "elastic-agent-31805", "type": "metricbeat", "version": "8.14.0" }, "data_stream": { "dataset": "prometheus.query", "namespace": "54564", "type": "metrics" }, "ecs": { "version": "8.0.0" }, "elastic_agent": { "id": "842b000b-c1bd-4608-bbd8-2a1849afc2f5", "snapshot": false, "version": "8.14.0" }, "event": { "agent_id_status": "verified", "dataset": "prometheus.query", "duration": 6078736, "ingested": "2024-08-20T08:39:10Z", "module": "prometheus" }, "host": { "architecture": "x86_64", "containerized": true, "hostname": "elastic-agent-31805", "id": "345c85cf1fe945e2b19719b370c09a48", "ip": [ "192.168.241.8", "192.168.242.2" ], "mac": [ "02-42-C0-A8-F1-08", "02-42-C0-A8-F2-02" ], "name": "elastic-agent-31805", "os": { "codename": "focal", "family": "debian", "kernel": "5.4.0-189-generic", "name": "Ubuntu", "platform": "ubuntu", "type": "linux", "version": "20.04.6 LTS (Focal Fossa)" } }, "metricset": { "name": "query", "period": 10000 }, "prometheus": { "labels": { "query_name": "scalar" }, "labels_fingerprint": "uE8iX47vrW1H38mLYMD73p8/CcA=", "query": { "scalar": 100 } }, "service": { "address": "http://svc-prometheus:9090", "type": "prometheus" } }
The fields reported are:
ECS Field Reference
Please refer to the following document for detailed information on ECS fields.
Exported fields
Field | Description | Type | Metric Type |
---|---|---|---|
@timestamp |
Event timestamp. |
date |
|
agent.id |
Unique identifier of this agent (if one exists). Example: For Beats this would be beat.id. |
keyword |
|
cloud.account.id |
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier. |
keyword |
|
cloud.availability_zone |
Availability zone in which this host is running. |
keyword |
|
cloud.image.id |
Image ID for the cloud instance. |
keyword |
|
cloud.instance.id |
Instance ID of the host machine. |
keyword |
|
cloud.provider |
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean. |
keyword |
|
cloud.region |
Region in which this host is running. |
keyword |
|
container.id |
Unique container id. |
keyword |
|
data_stream.dataset |
Data stream dataset. |
constant_keyword |
|
data_stream.namespace |
Data stream namespace. |
constant_keyword |
|
data_stream.type |
Data stream type. |
constant_keyword |
|
event.module |
Event module. |
constant_keyword |
|
host.containerized |
If the host is a container. |
boolean |
|
host.name |
Name of the host. It can contain what |
keyword |
|
host.os.build |
OS build information. |
keyword |
|
host.os.codename |
OS codename, if any. |
keyword |
|
prometheus.labels.* |
Prometheus metric labels. |
keyword |
|
prometheus.labels_fingerprint |
Autogenerated ID representing the fingerprint of labels object and includes query name. |
keyword |
|
prometheus.query.* |
Prometheus value resulted from PromQL |
object |
gauge |
service.address |
Address where data about this service was collected from. This should be a URI, network address (ipv4:port or [ipv6]:port) or a resource path (sockets). |
keyword |
Dashboard
editPrometheus integration is shipped including default overview dashboard.
Default dashboard works only for remote_write
datastream and collector
datastream, if metrics are scraped from the Prometheus server metrics endpoint.
Changelog
editChangelog
Version | Details | Kibana version(s) |
---|---|---|
1.21.0 |
Enhancement (View pull request) |
8.16.0 or higher |
1.20.1 |
Enhancement (View pull request) |
8.16.0 or higher |
1.20.0 |
Enhancement (View pull request) |
8.16.0 or higher |
1.19.0 |
Enhancement (View pull request) |
8.14.0 or higher |
1.18.2 |
Enhancement (View pull request) |
8.14.0 or higher |
1.18.1 |
Bug fix (View pull request) |
8.14.0 or higher |
1.18.0 |
Enhancement (View pull request) |
8.14.0 or higher |
1.17.0 |
Enhancement (View pull request) |
8.14.0 or higher |
1.16.0 |
Bug fix (View pull request) |
8.12.1 or higher |
1.15.3 |
Bug fix (View pull request) |
8.12.1 or higher |
1.15.2 |
Bug fix (View pull request) |
8.12.1 or higher |
1.15.1 |
Bug fix (View pull request) |
8.12.1 or higher |
1.15.0 |
Enhancement (View pull request) |
8.12.1 or higher |
1.14.2 |
Bug fix (View pull request) |
8.9.0 or higher |
1.14.1 |
Enhancement (View pull request) |
8.9.0 or higher |
1.14.0 |
Enhancement (View pull request) |
8.9.0 or higher |
1.13.1 |
Enhancement (View pull request) |
8.9.0 or higher |
1.13.0 |
Enhancement (View pull request) |
8.9.0 or higher |
1.12.1 |
Bug fix (View pull request) |
8.9.0 or higher |
1.12.0 |
Enhancement (View pull request) |
8.9.0 or higher |
1.11.0 |
Enhancement (View pull request) |
8.9.0 or higher |
1.10.0 |
Enhancement (View pull request) |
8.9.0 or higher |
1.9.0 |
Enhancement (View pull request) |
8.9.0 or higher |
1.8.0 |
Enhancement (View pull request) |
8.9.0 or higher |
1.7.0 |
Enhancement (View pull request) |
8.9.0 or higher |
1.6.0 |
Enhancement (View pull request) |
8.9.0 or higher |
1.5.0 |
Enhancement (View pull request) |
8.4.0 or higher |
1.4.0 |
Enhancement (View pull request) |
8.4.0 or higher |
1.3.2 |
Bug fix (View pull request) |
8.4.0 or higher |
1.3.1 |
Enhancement (View pull request) |
8.4.0 or higher |
1.3.0 |
Enhancement (View pull request) |
8.4.0 or higher |
1.2.0 |
Enhancement (View pull request) |
8.4.0 or higher |
1.1.0 |
Enhancement (View pull request) |
8.4.0 or higher |
1.0.1 |
Enhancement (View pull request) |
8.4.0 or higher |
1.0.0 |
Enhancement (View pull request) |
8.4.0 or higher |
0.14.0 |
Enhancement (View pull request) |
— |
0.13.0 |
Enhancement (View pull request) |
— |
0.12.0 |
Bug fix (View pull request) |
— |
0.11.0 |
Bug fix (View pull request) |
— |
0.10.0 |
Enhancement (View pull request) |
— |
0.9.2 |
Enhancement (View pull request) |
— |
0.9.1 |
Enhancement (View pull request) |
— |
0.9.0 |
Enhancement (View pull request) |
— |
0.8.0 |
Enhancement (View pull request) |
— |
0.7.0 |
Enhancement (View pull request) |
— |
0.6.1 |
Enhancement (View pull request) |
— |
0.6.0 |
Enhancement (View pull request) |
— |
0.5.1 |
Enhancement (View pull request) |
— |
0.5.0 |
Enhancement (View pull request) |
— |
0.4.1 |
Enhancement (View pull request) |
— |
0.4.0 |
Enhancement (View pull request) |
— |
0.3.5 |
Enhancement (View pull request) |
— |
0.3.4 |
Bug fix (View pull request) |
— |
0.3.3 |
Bug fix (View pull request) |
— |
0.1.0 |
Enhancement (View pull request) |
— |
On this page
- Metrics
- Prometheus Exporters (Collectors)
- Scraping from a Prometheus exporter
- Histograms and types
- Metrics count
- Scraping all metrics from a Prometheus server
- Filtering metrics
- Prometheus Server Remote-Write
- Histograms and types
- Types' patterns
- Metrics count
- Prometheus Queries (PromQL)
- Instant queries
- Range queries
- Dashboard
- Changelog
ElasticON events are back!
Learn about the Elastic Search AI Platform from the experts at our live events.
Register now