Beta feature
This functionality is in beta and is subject to change. The design and code is less mature than official generally available features and is being provided as-is with no warranties. Beta features are not subject to the support service level agreement of official generally available features.
What is an Elastic integration?

This integration is powered by Elastic Agent. Elastic Agent is a single, unified agent that you can deploy to hosts or containers to collect data and send it to the Elastic Stack. Behind the scenes, Elastic Agent runs the Beats shippers or Elastic Endpoint required for your configuration. Please refer to our documentation for a detailed comparison between Beats and Elastic Agent.

Prefer to use Beats for this use case? See Filebeat modules for logs or Metricbeat modules for metrics.

Overview

This integration sniffs network packets on a host and dissects known protocols.

Network Flows

Overall flow information about the network connections on a host.

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
client.bytes
Bytes sent from the client to the server.
long
client.ip
IP address of the client (IPv4 or IPv6).
ip
client.port
Port of the client.
long
client.process.args
The command-line of the process that initiated the transaction.
keyword
client.process.executable
Absolute path to the client process executable.
keyword
client.process.name
The name of the process that initiated the transaction.
keyword
client.process.start
The time the client process started.
date
client.process.working_directory
The working directory of the client process.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
destination.bytes
Bytes sent from the destination to the source.
long
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.dataset
Name of the dataset. If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from. It's recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.end
event.end contains the date when the event ended or when the activity was last observed.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.start
event.start contains the date when the event started or when the activity was first observed.
date
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
flow.final
Indicates if event is last event in flow. If final is false, the event reports an intermediate flow state only.
boolean
flow.id
Internal flow ID based on connection meta data and address.
keyword
flow.vlan
VLAN identifier from the 802.1q frame. In case of a multi-tagged frame this field will be an array with the outer tag's VLAN identifier listed first.
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
method
The command/verb/method of the transaction. For HTTP, this is the method name (GET, POST, PUT, and so on), for SQL this is the verb (SELECT, UPDATE, DELETE, and so on).
keyword
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. Recommended values are: * ingress * egress * inbound * outbound * internal * external * unknown When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.forwarded_ip
Host IP address when the source IP address is the proxy.
ip
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
params
The request parameters. For HTTP, these are the POST or GET parameters. For Thrift-RPC, these are the parameters from the request.
text
path
The path the transaction refers to. For HTTP, this is the URL. For SQL databases, this is the table name. For key-value stores, this is the key.
keyword
query
The query in a human readable format. For HTTP, it will typically be something like GET /users/_search?name=test. For MySQL, it is something like SELECT id from users where name=test.
keyword
related.ip
All of the IPs seen on your event.
ip
request
For text protocols, this is the request as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
resource
The logical resource that this transaction refers to. For HTTP, this is the URL path up to the last slash (/). For example, if the URL is /users/1, the resource is /users. For databases, the resource is typically the table name. The field is not filled for all transaction types.
keyword
response
For text protocols, this is the response as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
server.bytes
Bytes sent from the server to the client.
long
server.ip
IP address of the server (IPv4 or IPv6).
ip
server.port
Port of the server.
long
server.process.args
The command-line of the process that served the transaction.
keyword
server.process.executable
Absolute path to the server process executable.
keyword
server.process.name
The name of the process that served the transaction.
keyword
server.process.start
The time the server process started.
date
server.process.working_directory
The working directory of the server process.
keyword
source.bytes
Bytes sent from the source to the destination.
long
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
status
The high level status of the transaction. The way to compute this value depends on the protocol, but the result has a meaning independent of the protocol.
keyword
type
The type of the transaction (for example, HTTP, MySQL, Redis, or RUM) or "flow" in case of flows.
keyword

Protocols

AMQP

Fields published for AMQP packets.

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
amqp.app-id
Creating application id.
keyword
amqp.arguments
Optional additional arguments passed to some methods. Can be of various types.
object
amqp.auto-delete
If set, auto-delete queue when unused.
boolean
amqp.class-id
Failing method class.
long
amqp.consumer-count
The number of consumers of a queue.
long
amqp.consumer-tag
Identifier for the consumer, valid within the current channel.
keyword
amqp.content-encoding
MIME content encoding.
keyword
amqp.content-type
MIME content type.
keyword
amqp.correlation-id
Application correlation identifier.
keyword
amqp.delivery-mode
Non-persistent (1) or persistent (2).
keyword
amqp.delivery-tag
The server-assigned and channel-specific delivery tag.
long
amqp.durable
If set, request a durable exchange/queue.
boolean
amqp.exchange
Name of the exchange.
keyword
amqp.exchange-type
Exchange type.
keyword
amqp.exclusive
If set, request an exclusive queue.
boolean
amqp.expiration
Message expiration specification.
keyword
amqp.headers
Message header field table.
object
amqp.if-empty
Delete only if empty.
boolean
amqp.if-unused
Delete only if unused.
boolean
amqp.immediate
Request immediate delivery.
boolean
amqp.mandatory
Indicates mandatory routing.
boolean
amqp.message-count
The number of messages in the queue, which will be zero for newly-declared queues.
long
amqp.message-id
Application message identifier.
keyword
amqp.method-id
Failing method ID.
long
amqp.multiple
Acknowledge multiple messages.
boolean
amqp.no-ack
If set, the server does not expect acknowledgements for messages.
boolean
amqp.no-local
If set, the server will not send messages to the connection that published them.
boolean
amqp.no-wait
If set, the server will not respond to the method.
boolean
amqp.passive
If set, do not create exchange/queue.
boolean
amqp.priority
Message priority, 0 to 9.
long
amqp.queue
The queue name identifies the queue within the vhost.
keyword
amqp.redelivered
Indicates that the message has been previously delivered to this or another client.
boolean
amqp.reply-code
AMQP reply code to an error, similar to http reply-code
long
amqp.reply-text
Text explaining the error.
keyword
amqp.reply-to
Address to reply to.
keyword
amqp.routing-key
Message routing key.
keyword
amqp.timestamp
Message timestamp.
keyword
amqp.type
Message type name.
keyword
amqp.user-id
Creating user id.
keyword
client.bytes
Bytes sent from the client to the server.
long
client.ip
IP address of the client (IPv4 or IPv6).
ip
client.port
Port of the client.
long
client.process.args
The command-line of the process that initiated the transaction.
keyword
client.process.executable
Absolute path to the client process executable.
keyword
client.process.name
The name of the process that initiated the transaction.
keyword
client.process.start
The time the client process started.
date
client.process.working_directory
The working directory of the client process.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
destination.bytes
Bytes sent from the destination to the source.
long
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.dataset
Name of the dataset. If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from. It's recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.end
event.end contains the date when the event ended or when the activity was last observed.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.start
event.start contains the date when the event started or when the activity was first observed.
date
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
flow.final
Indicates if event is last event in flow. If final is false, the event reports an intermediate flow state only.
boolean
flow.id
Internal flow ID based on connection meta data and address.
keyword
flow.vlan
VLAN identifier from the 802.1q frame. In case of a multi-tagged frame this field will be an array with the outer tag's VLAN identifier listed first.
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
method
The command/verb/method of the transaction. For HTTP, this is the method name (GET, POST, PUT, and so on), for SQL this is the verb (SELECT, UPDATE, DELETE, and so on).
keyword
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. Recommended values are: * ingress * egress * inbound * outbound * internal * external * unknown When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.forwarded_ip
Host IP address when the source IP address is the proxy.
ip
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
params
The request parameters. For HTTP, these are the POST or GET parameters. For Thrift-RPC, these are the parameters from the request.
text
path
The path the transaction refers to. For HTTP, this is the URL. For SQL databases, this is the table name. For key-value stores, this is the key.
keyword
query
The query in a human readable format. For HTTP, it will typically be something like GET /users/_search?name=test. For MySQL, it is something like SELECT id from users where name=test.
keyword
related.ip
All of the IPs seen on your event.
ip
request
For text protocols, this is the request as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
resource
The logical resource that this transaction refers to. For HTTP, this is the URL path up to the last slash (/). For example, if the URL is /users/1, the resource is /users. For databases, the resource is typically the table name. The field is not filled for all transaction types.
keyword
response
For text protocols, this is the response as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
server.bytes
Bytes sent from the server to the client.
long
server.ip
IP address of the server (IPv4 or IPv6).
ip
server.port
Port of the server.
long
server.process.args
The command-line of the process that served the transaction.
keyword
server.process.executable
Absolute path to the server process executable.
keyword
server.process.name
The name of the process that served the transaction.
keyword
server.process.start
The time the server process started.
date
server.process.working_directory
The working directory of the server process.
keyword
source.bytes
Bytes sent from the source to the destination.
long
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
status
The high level status of the transaction. The way to compute this value depends on the protocol, but the result has a meaning independent of the protocol.
keyword
type
The type of the transaction (for example, HTTP, MySQL, Redis, or RUM) or "flow" in case of flows.
keyword

An example event for amqp looks as following:

{
    "@timestamp": "2022-03-09T07:37:02.033Z",
    "agent": {
        "ephemeral_id": "ff9ccf25-9d67-46a5-b661-aa01e3db9b84",
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "name": "docker-fleet-agent",
        "type": "packetbeat",
        "version": "8.0.0"
    },
    "amqp": {
        "auto-delete": false,
        "consumer-count": 0,
        "durable": false,
        "exclusive": false,
        "message-count": 0,
        "no-wait": false,
        "passive": false,
        "queue": "hello"
    },
    "client": {
        "bytes": 25,
        "ip": "127.0.0.1",
        "port": 34222
    },
    "data_stream": {
        "dataset": "network_traffic.amqp",
        "namespace": "ep",
        "type": "logs"
    },
    "destination": {
        "bytes": 26,
        "ip": "127.0.0.1",
        "port": 5672
    },
    "ecs": {
        "version": "8.2.0"
    },
    "elastic_agent": {
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "snapshot": false,
        "version": "8.0.0"
    },
    "event": {
        "action": "amqp.queue.declare",
        "agent_id_status": "verified",
        "category": [
            "network"
        ],
        "dataset": "network_traffic.amqp",
        "duration": 1325900,
        "end": "2022-03-09T07:37:02.035Z",
        "ingested": "2022-03-09T07:37:03Z",
        "kind": "event",
        "start": "2022-03-09T07:37:02.033Z",
        "type": [
            "connection",
            "protocol"
        ]
    },
    "host": {
        "architecture": "x86_64",
        "containerized": true,
        "hostname": "docker-fleet-agent",
        "ip": [
            "192.168.176.7"
        ],
        "mac": [
            "02-42-C0-A8-B0-07"
        ],
        "name": "docker-fleet-agent",
        "os": {
            "codename": "focal",
            "family": "debian",
            "kernel": "5.10.47-linuxkit",
            "name": "Ubuntu",
            "platform": "ubuntu",
            "type": "linux",
            "version": "20.04.3 LTS (Focal Fossa)"
        }
    },
    "method": "queue.declare",
    "network": {
        "bytes": 51,
        "community_id": "1:i6J4zz0FGnZMYLIy8kabND2W/XE=",
        "direction": "ingress",
        "protocol": "amqp",
        "transport": "tcp",
        "type": "ipv4"
    },
    "related": {
        "ip": [
            "127.0.0.1"
        ]
    },
    "server": {
        "bytes": 26,
        "ip": "127.0.0.1",
        "port": 5672
    },
    "source": {
        "bytes": 25,
        "ip": "127.0.0.1",
        "port": 34222
    },
    "status": "OK",
    "type": "amqp"
}

Cassandra

Fields published for Apache Cassandra packets.

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
cassandra.no_request
Indicates that there is no request because this is a PUSH message.
boolean
cassandra.request.headers.flags
Flags applying to this frame.
keyword
cassandra.request.headers.length
A integer representing the length of the body of the frame (a frame is limited to 256MB in length).
long
cassandra.request.headers.op
An operation type that distinguishes the actual message.
keyword
cassandra.request.headers.stream
A frame has a stream id. If a client sends a request message with the stream id X, it is guaranteed that the stream id of the response to that message will be X.
keyword
cassandra.request.headers.version
The version of the protocol.
keyword
cassandra.request.query
The CQL query which client send to cassandra.
keyword
cassandra.response.authentication.class
Indicates the full class name of the IAuthenticator in use
keyword
cassandra.response.error.code
The error code of the Cassandra response.
long
cassandra.response.error.details.alive
Representing the number of replicas that were known to be alive when the request had been processed (since an unavailable exception has been triggered).
long
cassandra.response.error.details.arg_types
One string for each argument type (as CQL type) of the failed function.
keyword
cassandra.response.error.details.blockfor
Representing the number of replicas whose acknowledgement is required to achieve consistency level.
long
cassandra.response.error.details.data_present
It means the replica that was asked for data had responded.
boolean
cassandra.response.error.details.function
The name of the failed function.
keyword
cassandra.response.error.details.keyspace
The keyspace of the failed function.
keyword
cassandra.response.error.details.num_failures
Representing the number of nodes that experience a failure while executing the request.
keyword
cassandra.response.error.details.read_consistency
Representing the consistency level of the query that triggered the exception.
keyword
cassandra.response.error.details.received
Representing the number of nodes having acknowledged the request.
long
cassandra.response.error.details.required
Representing the number of nodes that should be alive to respect consistency level.
long
cassandra.response.error.details.stmt_id
Representing the unknown ID.
keyword
cassandra.response.error.details.table
The keyspace of the failed function.
keyword
cassandra.response.error.details.write_type
Describe the type of the write that timed out.
keyword
cassandra.response.error.msg
The error message of the Cassandra response.
keyword
cassandra.response.error.type
The error type of the Cassandra response.
keyword
cassandra.response.event.change
The message corresponding respectively to the type of change followed by the address of the new/removed node.
keyword
cassandra.response.event.host
Representing the node ip.
keyword
cassandra.response.event.port
Representing the node port.
long
cassandra.response.event.schema_change.args
One string for each argument type (as CQL type).
keyword
cassandra.response.event.schema_change.change
Representing the type of changed involved.
keyword
cassandra.response.event.schema_change.keyspace
This describes which keyspace has changed.
keyword
cassandra.response.event.schema_change.name
The function/aggregate name.
keyword
cassandra.response.event.schema_change.object
This describes the name of said affected object (either the table, user type, function, or aggregate name).
keyword
cassandra.response.event.schema_change.table
This describes which table has changed.
keyword
cassandra.response.event.schema_change.target
Target could be "FUNCTION" or "AGGREGATE", multiple arguments.
keyword
cassandra.response.event.type
Representing the event type.
keyword
cassandra.response.headers.flags
Flags applying to this frame.
keyword
cassandra.response.headers.length
A integer representing the length of the body of the frame (a frame is limited to 256MB in length).
long
cassandra.response.headers.op
An operation type that distinguishes the actual message.
keyword
cassandra.response.headers.stream
A frame has a stream id. If a client sends a request message with the stream id X, it is guaranteed that the stream id of the response to that message will be X.
keyword
cassandra.response.headers.version
The version of the protocol.
keyword
cassandra.response.result.keyspace
Indicating the name of the keyspace that has been set.
keyword
cassandra.response.result.prepared.prepared_id
Representing the prepared query ID.
keyword
cassandra.response.result.prepared.req_meta.col_count
Representing the number of columns selected by the query that produced this result.
long
cassandra.response.result.prepared.req_meta.flags
Provides information on the formatting of the remaining information.
keyword
cassandra.response.result.prepared.req_meta.keyspace
Only present after set Global_tables_spec, the keyspace name.
keyword
cassandra.response.result.prepared.req_meta.paging_state
The paging_state is a bytes value that should be used in QUERY/EXECUTE to continue paging and retrieve the remainder of the result for this query.
keyword
cassandra.response.result.prepared.req_meta.pkey_columns
Representing the PK columns index and counts.
long
cassandra.response.result.prepared.req_meta.table
Only present after set Global_tables_spec, the table name.
keyword
cassandra.response.result.prepared.resp_meta.col_count
Representing the number of columns selected by the query that produced this result.
long
cassandra.response.result.prepared.resp_meta.flags
Provides information on the formatting of the remaining information.
keyword
cassandra.response.result.prepared.resp_meta.keyspace
Only present after set Global_tables_spec, the keyspace name.
keyword
cassandra.response.result.prepared.resp_meta.paging_state
The paging_state is a bytes value that should be used in QUERY/EXECUTE to continue paging and retrieve the remainder of the result for this query.
keyword
cassandra.response.result.prepared.resp_meta.pkey_columns
Representing the PK columns index and counts.
long
cassandra.response.result.prepared.resp_meta.table
Only present after set Global_tables_spec, the table name.
keyword
cassandra.response.result.rows.meta.col_count
Representing the number of columns selected by the query that produced this result.
long
cassandra.response.result.rows.meta.flags
Provides information on the formatting of the remaining information.
keyword
cassandra.response.result.rows.meta.keyspace
Only present after set Global_tables_spec, the keyspace name.
keyword
cassandra.response.result.rows.meta.paging_state
The paging_state is a bytes value that should be used in QUERY/EXECUTE to continue paging and retrieve the remainder of the result for this query.
keyword
cassandra.response.result.rows.meta.pkey_columns
Representing the PK columns index and counts.
long
cassandra.response.result.rows.meta.table
Only present after set Global_tables_spec, the table name.
keyword
cassandra.response.result.rows.num_rows
Representing the number of rows present in this result.
long
cassandra.response.result.schema_change.args
One string for each argument type (as CQL type).
keyword
cassandra.response.result.schema_change.change
Representing the type of changed involved.
keyword
cassandra.response.result.schema_change.keyspace
This describes which keyspace has changed.
keyword
cassandra.response.result.schema_change.name
The function/aggregate name.
keyword
cassandra.response.result.schema_change.object
This describes the name of said affected object (either the table, user type, function, or aggregate name).
keyword
cassandra.response.result.schema_change.table
This describes which table has changed.
keyword
cassandra.response.result.schema_change.target
Target could be "FUNCTION" or "AGGREGATE", multiple arguments.
keyword
cassandra.response.result.type
Cassandra result type.
keyword
cassandra.response.supported
Indicates which startup options are supported by the server. This message comes as a response to an OPTIONS message.
flattened
cassandra.response.warnings
The text of the warnings, only occur when Warning flag was set.
keyword
client.bytes
Bytes sent from the client to the server.
long
client.ip
IP address of the client (IPv4 or IPv6).
ip
client.port
Port of the client.
long
client.process.args
The command-line of the process that initiated the transaction.
keyword
client.process.executable
Absolute path to the client process executable.
keyword
client.process.name
The name of the process that initiated the transaction.
keyword
client.process.start
The time the client process started.
date
client.process.working_directory
The working directory of the client process.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
destination.bytes
Bytes sent from the destination to the source.
long
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.dataset
Name of the dataset. If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from. It's recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.end
event.end contains the date when the event ended or when the activity was last observed.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.start
event.start contains the date when the event started or when the activity was first observed.
date
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
flow.final
Indicates if event is last event in flow. If final is false, the event reports an intermediate flow state only.
boolean
flow.id
Internal flow ID based on connection meta data and address.
keyword
flow.vlan
VLAN identifier from the 802.1q frame. In case of a multi-tagged frame this field will be an array with the outer tag's VLAN identifier listed first.
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
method
The command/verb/method of the transaction. For HTTP, this is the method name (GET, POST, PUT, and so on), for SQL this is the verb (SELECT, UPDATE, DELETE, and so on).
keyword
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. Recommended values are: * ingress * egress * inbound * outbound * internal * external * unknown When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.forwarded_ip
Host IP address when the source IP address is the proxy.
ip
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
params
The request parameters. For HTTP, these are the POST or GET parameters. For Thrift-RPC, these are the parameters from the request.
text
path
The path the transaction refers to. For HTTP, this is the URL. For SQL databases, this is the table name. For key-value stores, this is the key.
keyword
query
The query in a human readable format. For HTTP, it will typically be something like GET /users/_search?name=test. For MySQL, it is something like SELECT id from users where name=test.
keyword
related.ip
All of the IPs seen on your event.
ip
request
For text protocols, this is the request as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
resource
The logical resource that this transaction refers to. For HTTP, this is the URL path up to the last slash (/). For example, if the URL is /users/1, the resource is /users. For databases, the resource is typically the table name. The field is not filled for all transaction types.
keyword
response
For text protocols, this is the response as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
server.bytes
Bytes sent from the server to the client.
long
server.ip
IP address of the server (IPv4 or IPv6).
ip
server.port
Port of the server.
long
server.process.args
The command-line of the process that served the transaction.
keyword
server.process.executable
Absolute path to the server process executable.
keyword
server.process.name
The name of the process that served the transaction.
keyword
server.process.start
The time the server process started.
date
server.process.working_directory
The working directory of the server process.
keyword
source.bytes
Bytes sent from the source to the destination.
long
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
status
The high level status of the transaction. The way to compute this value depends on the protocol, but the result has a meaning independent of the protocol.
keyword
type
The type of the transaction (for example, HTTP, MySQL, Redis, or RUM) or "flow" in case of flows.
keyword

An example event for cassandra looks as following:

{
    "@timestamp": "2022-03-09T07:43:05.888Z",
    "agent": {
        "ephemeral_id": "20d6eb94-1319-473d-9e2f-05621a4d2494",
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "name": "docker-fleet-agent",
        "type": "packetbeat",
        "version": "8.0.0"
    },
    "cassandra": {
        "request": {
            "headers": {
                "flags": "Default",
                "length": 98,
                "op": "QUERY",
                "stream": 49,
                "version": "4"
            },
            "query": "CREATE TABLE users (\n  user_id int PRIMARY KEY,\n  fname text,\n  lname text\n);"
        },
        "response": {
            "headers": {
                "flags": "Default",
                "length": 39,
                "op": "RESULT",
                "stream": 49,
                "version": "4"
            },
            "result": {
                "schema_change": {
                    "change": "CREATED",
                    "keyspace": "mykeyspace",
                    "object": "users",
                    "target": "TABLE"
                },
                "type": "schemaChanged"
            }
        }
    },
    "client": {
        "bytes": 107,
        "ip": "127.0.0.1",
        "port": 52749
    },
    "data_stream": {
        "dataset": "network_traffic.cassandra",
        "namespace": "ep",
        "type": "logs"
    },
    "destination": {
        "bytes": 48,
        "ip": "127.0.0.1",
        "port": 9042
    },
    "ecs": {
        "version": "8.2.0"
    },
    "elastic_agent": {
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "snapshot": false,
        "version": "8.0.0"
    },
    "event": {
        "agent_id_status": "verified",
        "category": [
            "network"
        ],
        "dataset": "network_traffic.cassandra",
        "duration": 131589500,
        "end": "2022-03-09T07:43:06.019Z",
        "ingested": "2022-03-09T07:43:09Z",
        "kind": "event",
        "start": "2022-03-09T07:43:05.888Z",
        "type": [
            "connection",
            "protocol"
        ]
    },
    "host": {
        "architecture": "x86_64",
        "containerized": true,
        "hostname": "docker-fleet-agent",
        "ip": [
            "192.168.176.7"
        ],
        "mac": [
            "02-42-C0-A8-B0-07"
        ],
        "name": "docker-fleet-agent",
        "os": {
            "codename": "focal",
            "family": "debian",
            "kernel": "5.10.47-linuxkit",
            "name": "Ubuntu",
            "platform": "ubuntu",
            "type": "linux",
            "version": "20.04.3 LTS (Focal Fossa)"
        }
    },
    "network": {
        "bytes": 155,
        "community_id": "1:bCORHZnGIk6GWYaE3Kn0DOpQCKE=",
        "direction": "ingress",
        "protocol": "cassandra",
        "transport": "tcp",
        "type": "ipv4"
    },
    "related": {
        "ip": [
            "127.0.0.1"
        ]
    },
    "server": {
        "bytes": 48,
        "ip": "127.0.0.1",
        "port": 9042
    },
    "source": {
        "bytes": 107,
        "ip": "127.0.0.1",
        "port": 52749
    },
    "status": "OK",
    "type": "cassandra"
}

DHCP

Fields published for DHCPv4 packets.

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
client.bytes
Bytes sent from the client to the server.
long
client.ip
IP address of the client (IPv4 or IPv6).
ip
client.port
Port of the client.
long
client.process.args
The command-line of the process that initiated the transaction.
keyword
client.process.executable
Absolute path to the client process executable.
keyword
client.process.name
The name of the process that initiated the transaction.
keyword
client.process.start
The time the client process started.
date
client.process.working_directory
The working directory of the client process.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
destination.bytes
Bytes sent from the destination to the source.
long
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
dhcpv4.assigned_ip
The IP address that the DHCP server is assigning to the client. This field is also known as "your" IP address.
ip
dhcpv4.client_ip
The current IP address of the client.
ip
dhcpv4.client_mac
The client's MAC address (layer two).
keyword
dhcpv4.flags
Flags are set by the client to indicate how the DHCP server should its reply -- either unicast or broadcast.
keyword
dhcpv4.hardware_type
The type of hardware used for the local network (Ethernet, LocalTalk, etc).
keyword
dhcpv4.hops
The number of hops the DHCP message went through.
long
dhcpv4.op_code
The message op code (bootrequest or bootreply).
keyword
dhcpv4.option.boot_file_name
This option is used to identify a bootfile when the 'file' field in the DHCP header has been used for DHCP options.
keyword
dhcpv4.option.broadcast_address
This option specifies the broadcast address in use on the client's subnet.
ip
dhcpv4.option.class_identifier
This option is used by DHCP clients to optionally identify the vendor type and configuration of a DHCP client. Vendors may choose to define specific vendor class identifiers to convey particular configuration or other identification information about a client. For example, the identifier may encode the client's hardware configuration.
keyword
dhcpv4.option.dns_servers
The domain name server option specifies a list of Domain Name System servers available to the client.
ip
dhcpv4.option.domain_name
This option specifies the domain name that client should use when resolving hostnames via the Domain Name System.
keyword
dhcpv4.option.hostname
This option specifies the name of the client.
keyword
dhcpv4.option.ip_address_lease_time_sec
This option is used in a client request (DHCPDISCOVER or DHCPREQUEST) to allow the client to request a lease time for the IP address. In a server reply (DHCPOFFER), a DHCP server uses this option to specify the lease time it is willing to offer.
long
dhcpv4.option.max_dhcp_message_size
This option specifies the maximum length DHCP message that the client is willing to accept.
long
dhcpv4.option.message
This option is used by a DHCP server to provide an error message to a DHCP client in a DHCPNAK message in the event of a failure. A client may use this option in a DHCPDECLINE message to indicate the why the client declined the offered parameters.
text
dhcpv4.option.message_type
The specific type of DHCP message being sent (e.g. discover, offer, request, decline, ack, nak, release, inform).
keyword
dhcpv4.option.ntp_servers
This option specifies a list of IP addresses indicating NTP servers available to the client.
ip
dhcpv4.option.parameter_request_list
This option is used by a DHCP client to request values for specified configuration parameters.
keyword
dhcpv4.option.rebinding_time_sec
This option specifies the time interval from address assignment until the client transitions to the REBINDING state.
long
dhcpv4.option.renewal_time_sec
This option specifies the time interval from address assignment until the client transitions to the RENEWING state.
long
dhcpv4.option.requested_ip_address
This option is used in a client request (DHCPDISCOVER) to allow the client to request that a particular IP address be assigned.
ip
dhcpv4.option.router
The router option specifies a list of IP addresses for routers on the client's subnet.
ip
dhcpv4.option.server_identifier
IP address of the individual DHCP server which handled this message.
ip
dhcpv4.option.subnet_mask
The subnet mask that the client should use on the currnet network.
ip
dhcpv4.option.time_servers
The time server option specifies a list of RFC 868 time servers available to the client.
ip
dhcpv4.option.utc_time_offset_sec
The time offset field specifies the offset of the client's subnet in seconds from Coordinated Universal Time (UTC).
long
dhcpv4.option.vendor_identifying_options
A DHCP client may use this option to unambiguously identify the vendor that manufactured the hardware on which the client is running, the software in use, or an industry consortium to which the vendor belongs. This field is described in RFC 3925.
object
dhcpv4.relay_ip
The relay IP address used by the client to contact the server (i.e. a DHCP relay server).
ip
dhcpv4.seconds
Number of seconds elapsed since client began address acquisition or renewal process.
long
dhcpv4.server_ip
The IP address of the DHCP server that the client should use for the next step in the bootstrap process.
ip
dhcpv4.server_name
The name of the server sending the message. Optional. Used in DHCPOFFER or DHCPACK messages.
keyword
dhcpv4.transaction_id
Transaction ID, a random number chosen by the client, used by the client and server to associate messages and responses between a client and a server.
keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.dataset
Name of the dataset. If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from. It's recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.end
event.end contains the date when the event ended or when the activity was last observed.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.start
event.start contains the date when the event started or when the activity was first observed.
date
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
flow.final
Indicates if event is last event in flow. If final is false, the event reports an intermediate flow state only.
boolean
flow.id
Internal flow ID based on connection meta data and address.
keyword
flow.vlan
VLAN identifier from the 802.1q frame. In case of a multi-tagged frame this field will be an array with the outer tag's VLAN identifier listed first.
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
method
The command/verb/method of the transaction. For HTTP, this is the method name (GET, POST, PUT, and so on), for SQL this is the verb (SELECT, UPDATE, DELETE, and so on).
keyword
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. Recommended values are: * ingress * egress * inbound * outbound * internal * external * unknown When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.forwarded_ip
Host IP address when the source IP address is the proxy.
ip
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
params
The request parameters. For HTTP, these are the POST or GET parameters. For Thrift-RPC, these are the parameters from the request.
text
path
The path the transaction refers to. For HTTP, this is the URL. For SQL databases, this is the table name. For key-value stores, this is the key.
keyword
query
The query in a human readable format. For HTTP, it will typically be something like GET /users/_search?name=test. For MySQL, it is something like SELECT id from users where name=test.
keyword
related.ip
All of the IPs seen on your event.
ip
request
For text protocols, this is the request as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
resource
The logical resource that this transaction refers to. For HTTP, this is the URL path up to the last slash (/). For example, if the URL is /users/1, the resource is /users. For databases, the resource is typically the table name. The field is not filled for all transaction types.
keyword
response
For text protocols, this is the response as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
server.bytes
Bytes sent from the server to the client.
long
server.ip
IP address of the server (IPv4 or IPv6).
ip
server.port
Port of the server.
long
server.process.args
The command-line of the process that served the transaction.
keyword
server.process.executable
Absolute path to the server process executable.
keyword
server.process.name
The name of the process that served the transaction.
keyword
server.process.start
The time the server process started.
date
server.process.working_directory
The working directory of the server process.
keyword
source.bytes
Bytes sent from the source to the destination.
long
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
status
The high level status of the transaction. The way to compute this value depends on the protocol, but the result has a meaning independent of the protocol.
keyword
type
The type of the transaction (for example, HTTP, MySQL, Redis, or RUM) or "flow" in case of flows.
keyword

An example event for dhcpv4 looks as following:

{
    "@timestamp": "2022-03-09T07:43:52.712Z",
    "agent": {
        "ephemeral_id": "b98a43ba-d050-42e6-ab2f-2eba352e9cb0",
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "name": "docker-fleet-agent",
        "type": "packetbeat",
        "version": "8.0.0"
    },
    "client": {
        "bytes": 272,
        "ip": "0.0.0.0",
        "port": 68
    },
    "data_stream": {
        "dataset": "network_traffic.dhcpv4",
        "namespace": "ep",
        "type": "logs"
    },
    "destination": {
        "ip": "255.255.255.255",
        "port": 67
    },
    "dhcpv4": {
        "client_mac": "00-0B-82-01-FC-42",
        "flags": "unicast",
        "hardware_type": "Ethernet",
        "hops": 0,
        "op_code": "bootrequest",
        "option": {
            "message_type": "discover",
            "parameter_request_list": [
                "Subnet Mask",
                "Router",
                "Domain Name Server",
                "NTP Servers"
            ],
            "requested_ip_address": "0.0.0.0"
        },
        "seconds": 0,
        "transaction_id": "0x00003d1d"
    },
    "ecs": {
        "version": "8.2.0"
    },
    "elastic_agent": {
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "snapshot": false,
        "version": "8.0.0"
    },
    "event": {
        "agent_id_status": "verified",
        "category": [
            "network"
        ],
        "dataset": "network_traffic.dhcpv4",
        "ingested": "2022-03-09T07:43:53Z",
        "kind": "event",
        "start": "2022-03-09T07:43:52.712Z",
        "type": [
            "connection",
            "protocol"
        ]
    },
    "host": {
        "architecture": "x86_64",
        "containerized": true,
        "hostname": "docker-fleet-agent",
        "ip": [
            "192.168.176.7"
        ],
        "mac": [
            "02-42-C0-A8-B0-07"
        ],
        "name": "docker-fleet-agent",
        "os": {
            "codename": "focal",
            "family": "debian",
            "kernel": "5.10.47-linuxkit",
            "name": "Ubuntu",
            "platform": "ubuntu",
            "type": "linux",
            "version": "20.04.3 LTS (Focal Fossa)"
        }
    },
    "network": {
        "bytes": 272,
        "community_id": "1:t9O1j0qj71O4wJM7gnaHtgmfev8=",
        "direction": "unknown",
        "protocol": "dhcpv4",
        "transport": "udp",
        "type": "ipv4"
    },
    "related": {
        "ip": [
            "0.0.0.0",
            "255.255.255.255"
        ]
    },
    "server": {
        "ip": "255.255.255.255",
        "port": 67
    },
    "source": {
        "bytes": 272,
        "ip": "0.0.0.0",
        "port": 68
    },
    "status": "OK",
    "type": "dhcpv4"
}

DNS

Fields published for DNS packets.

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
client.bytes
Bytes sent from the client to the server.
long
client.ip
IP address of the client (IPv4 or IPv6).
ip
client.port
Port of the client.
long
client.process.args
The command-line of the process that initiated the transaction.
keyword
client.process.executable
Absolute path to the client process executable.
keyword
client.process.name
The name of the process that initiated the transaction.
keyword
client.process.start
The time the client process started.
date
client.process.working_directory
The working directory of the client process.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
destination.bytes
Bytes sent from the destination to the source.
long
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
dns.additionals
An array containing a dictionary for each additional section from the answer.
object
dns.additionals.class
The class of DNS data contained in this resource record.
keyword
dns.additionals.data
The data describing the resource. The meaning of this data depends on the type and class of the resource record.
keyword
dns.additionals.name
The domain name to which this resource record pertains.
keyword
dns.additionals.ttl
The time interval in seconds that this resource record may be cached before it should be discarded. Zero values mean that the data should not be cached.
long
dns.additionals.type
The type of data contained in this resource record.
keyword
dns.additionals_count
The number of resource records contained in the dns.additionals field. The dns.additionals field may or may not be included depending on the configuration of Packetbeat.
long
dns.answers
An array containing an object for each answer section returned by the server. The main keys that should be present in these objects are defined by ECS. Records that have more information may contain more keys than what ECS defines. Not all DNS data sources give all details about DNS answers. At minimum, answer objects must contain the data key. If more information is available, map as much of it to ECS as possible, and add any additional fields to the answer objects as custom fields.
object
dns.answers.class
The class of DNS data contained in this resource record.
keyword
dns.answers.data
The data describing the resource. The meaning of this data depends on the type and class of the resource record.
keyword
dns.answers.name
The domain name to which this resource record pertains. If a chain of CNAME is being resolved, each answer's name should be the one that corresponds with the answer's data. It should not simply be the original question.name repeated.
keyword
dns.answers.ttl
The time interval in seconds that this resource record may be cached before it should be discarded. Zero values mean that the data should not be cached.
long
dns.answers.type
The type of data contained in this resource record.
keyword
dns.answers_count
The number of resource records contained in the dns.answers field.
long
dns.authorities
An array containing a dictionary for each authority section from the answer.
object
dns.authorities.class
The class of DNS data contained in this resource record.
keyword
dns.authorities.name
The domain name to which this resource record pertains.
keyword
dns.authorities.type
The type of data contained in this resource record.
keyword
dns.authorities_count
The number of resource records contained in the dns.authorities field. The dns.authorities field may or may not be included depending on the configuration of Packetbeat.
long
dns.flags.authentic_data
A DNS flag specifying that the recursive server considers the response authentic.
boolean
dns.flags.authoritative
A DNS flag specifying that the responding server is an authority for the domain name used in the question.
boolean
dns.flags.checking_disabled
A DNS flag specifying that the client disables the server signature validation of the query.
boolean
dns.flags.recursion_available
A DNS flag specifying whether recursive query support is available in the name server.
boolean
dns.flags.recursion_desired
A DNS flag specifying that the client directs the server to pursue a query recursively. Recursive query support is optional.
boolean
dns.flags.truncated_response
A DNS flag specifying that only the first 512 bytes of the reply were returned.
boolean
dns.header_flags
Array of 2 letter DNS header flags. Expected values are: AA, TC, RD, RA, AD, CD, DO.
keyword
dns.id
The DNS packet identifier assigned by the program that generated the query. The identifier is copied to the response.
keyword
dns.op_code
The DNS operation code that specifies the kind of query in the message. This value is set by the originator of a query and copied into the response.
keyword
dns.opt.do
If set, the transaction uses DNSSEC.
boolean
dns.opt.ext_rcode
Extended response code field.
keyword
dns.opt.udp_size
Requestor's UDP payload size (in bytes).
long
dns.opt.version
The EDNS version.
keyword
dns.question.class
The class of records being queried.
keyword
dns.question.etld_plus_one
The effective top-level domain (eTLD) plus one more label. For example, the eTLD+1 for "foo.bar.golang.org." is "golang.org.". The data for determining the eTLD comes from an embedded copy of the data from http://publicsuffix.org.
keyword
dns.question.name
The name being queried. If the name field contains non-printable characters (below 32 or above 126), those characters should be represented as escaped base 10 integers (\DDD). Back slashes and quotes should be escaped. Tabs, carriage returns, and line feeds should be converted to \t, \r, and \n respectively.
keyword
dns.question.registered_domain
The highest registered domain, stripped of the subdomain. For example, the registered domain for "foo.example.com" is "example.com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
keyword
dns.question.subdomain
The subdomain is all of the labels under the registered_domain. If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
keyword
dns.question.top_level_domain
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
keyword
dns.question.type
The type of record being queried.
keyword
dns.resolved_ip
Array containing all IPs seen in answers.data. The answers array can be difficult to use, because of the variety of data formats it can contain. Extracting all IP addresses seen in there to dns.resolved_ip makes it possible to index them as IP addresses, and makes them easier to visualize and query for.
ip
dns.response_code
The DNS response code.
keyword
dns.type
The type of DNS event captured, query or answer. If your source of DNS events only gives you DNS queries, you should only create dns events of type dns.type:query. If your source of DNS events gives you answers as well, you should create one event per query (optionally as soon as the query is seen). And a second event containing all query details as well as an array of answers.
keyword
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.dataset
Name of the dataset. If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from. It's recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.end
event.end contains the date when the event ended or when the activity was last observed.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.start
event.start contains the date when the event started or when the activity was first observed.
date
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
flow.final
Indicates if event is last event in flow. If final is false, the event reports an intermediate flow state only.
boolean
flow.id
Internal flow ID based on connection meta data and address.
keyword
flow.vlan
VLAN identifier from the 802.1q frame. In case of a multi-tagged frame this field will be an array with the outer tag's VLAN identifier listed first.
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
method
The command/verb/method of the transaction. For HTTP, this is the method name (GET, POST, PUT, and so on), for SQL this is the verb (SELECT, UPDATE, DELETE, and so on).
keyword
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. Recommended values are: * ingress * egress * inbound * outbound * internal * external * unknown When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.forwarded_ip
Host IP address when the source IP address is the proxy.
ip
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
params
The request parameters. For HTTP, these are the POST or GET parameters. For Thrift-RPC, these are the parameters from the request.
text
path
The path the transaction refers to. For HTTP, this is the URL. For SQL databases, this is the table name. For key-value stores, this is the key.
keyword
query
The query in a human readable format. For HTTP, it will typically be something like GET /users/_search?name=test. For MySQL, it is something like SELECT id from users where name=test.
keyword
related.ip
All of the IPs seen on your event.
ip
request
For text protocols, this is the request as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
resource
The logical resource that this transaction refers to. For HTTP, this is the URL path up to the last slash (/). For example, if the URL is /users/1, the resource is /users. For databases, the resource is typically the table name. The field is not filled for all transaction types.
keyword
response
For text protocols, this is the response as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
server.bytes
Bytes sent from the server to the client.
long
server.ip
IP address of the server (IPv4 or IPv6).
ip
server.port
Port of the server.
long
server.process.args
The command-line of the process that served the transaction.
keyword
server.process.executable
Absolute path to the server process executable.
keyword
server.process.name
The name of the process that served the transaction.
keyword
server.process.start
The time the server process started.
date
server.process.working_directory
The working directory of the server process.
keyword
source.bytes
Bytes sent from the source to the destination.
long
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
status
The high level status of the transaction. The way to compute this value depends on the protocol, but the result has a meaning independent of the protocol.
keyword
type
The type of the transaction (for example, HTTP, MySQL, Redis, or RUM) or "flow" in case of flows.
keyword

An example event for dns looks as following:

{
    "@timestamp": "2022-03-09T07:48:42.751Z",
    "agent": {
        "ephemeral_id": "1d099984-2551-49e1-9e6a-c1dff964be0f",
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "name": "docker-fleet-agent",
        "type": "packetbeat",
        "version": "8.0.0"
    },
    "client": {
        "bytes": 28,
        "ip": "192.168.238.68",
        "port": 53765
    },
    "data_stream": {
        "dataset": "network_traffic.dns",
        "namespace": "ep",
        "type": "logs"
    },
    "destination": {
        "bytes": 167,
        "ip": "8.8.8.8",
        "port": 53
    },
    "dns": {
        "additionals_count": 0,
        "answers": [
            {
                "class": "IN",
                "data": "ns-1183.awsdns-19.org",
                "name": "elastic.co",
                "ttl": "21599",
                "type": "NS"
            },
            {
                "class": "IN",
                "data": "ns-2007.awsdns-58.co.uk",
                "name": "elastic.co",
                "ttl": "21599",
                "type": "NS"
            },
            {
                "class": "IN",
                "data": "ns-66.awsdns-08.com",
                "name": "elastic.co",
                "ttl": "21599",
                "type": "NS"
            },
            {
                "class": "IN",
                "data": "ns-835.awsdns-40.net",
                "name": "elastic.co",
                "ttl": "21599",
                "type": "NS"
            }
        ],
        "answers_count": 4,
        "authorities_count": 0,
        "flags": {
            "authentic_data": false,
            "authoritative": false,
            "checking_disabled": false,
            "recursion_available": true,
            "recursion_desired": true,
            "truncated_response": false
        },
        "header_flags": [
            "RD",
            "RA"
        ],
        "id": 26187,
        "op_code": "QUERY",
        "question": {
            "class": "IN",
            "etld_plus_one": "elastic.co",
            "name": "elastic.co",
            "registered_domain": "elastic.co",
            "top_level_domain": "co",
            "type": "NS"
        },
        "response_code": "NOERROR",
        "type": "answer"
    },
    "ecs": {
        "version": "8.2.0"
    },
    "elastic_agent": {
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "snapshot": false,
        "version": "8.0.0"
    },
    "event": {
        "agent_id_status": "verified",
        "category": [
            "network"
        ],
        "dataset": "network_traffic.dns",
        "duration": 68515700,
        "end": "2022-03-09T07:48:42.819Z",
        "ingested": "2022-03-09T07:48:43Z",
        "kind": "event",
        "start": "2022-03-09T07:48:42.751Z",
        "type": [
            "connection",
            "protocol"
        ]
    },
    "host": {
        "architecture": "x86_64",
        "containerized": true,
        "hostname": "docker-fleet-agent",
        "ip": [
            "192.168.176.7"
        ],
        "mac": [
            "02-42-C0-A8-B0-07"
        ],
        "name": "docker-fleet-agent",
        "os": {
            "codename": "focal",
            "family": "debian",
            "kernel": "5.10.47-linuxkit",
            "name": "Ubuntu",
            "platform": "ubuntu",
            "type": "linux",
            "version": "20.04.3 LTS (Focal Fossa)"
        }
    },
    "method": "QUERY",
    "network": {
        "bytes": 195,
        "community_id": "1:3P4ruI0bVlqxiTAs0WyBhnF74ek=",
        "direction": "unknown",
        "protocol": "dns",
        "transport": "udp",
        "type": "ipv4"
    },
    "query": "class IN, type NS, elastic.co",
    "related": {
        "ip": [
            "192.168.238.68",
            "8.8.8.8"
        ]
    },
    "resource": "elastic.co",
    "server": {
        "bytes": 167,
        "ip": "8.8.8.8",
        "port": 53
    },
    "source": {
        "bytes": 28,
        "ip": "192.168.238.68",
        "port": 53765
    },
    "status": "OK",
    "type": "dns"
}

HTTP

Fields published for HTTP packets.

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
client.bytes
Bytes sent from the client to the server.
long
client.ip
IP address of the client (IPv4 or IPv6).
ip
client.port
Port of the client.
long
client.process.args
The command-line of the process that initiated the transaction.
keyword
client.process.executable
Absolute path to the client process executable.
keyword
client.process.name
The name of the process that initiated the transaction.
keyword
client.process.start
The time the client process started.
date
client.process.working_directory
The working directory of the client process.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
destination.bytes
Bytes sent from the destination to the source.
long
destination.domain
The domain name of the destination system. This value may be a host name, a fully qualified domain name, or another host naming format. The value may derive from the original event or be added from enrichment.
keyword
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.dataset
Name of the dataset. If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from. It's recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.end
event.end contains the date when the event ended or when the activity was last observed.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.start
event.start contains the date when the event started or when the activity was first observed.
date
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
flow.final
Indicates if event is last event in flow. If final is false, the event reports an intermediate flow state only.
boolean
flow.id
Internal flow ID based on connection meta data and address.
keyword
flow.vlan
VLAN identifier from the 802.1q frame. In case of a multi-tagged frame this field will be an array with the outer tag's VLAN identifier listed first.
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
http.request.body.bytes
Size in bytes of the request body.
long
http.request.bytes
Total size in bytes of the request (body and headers).
long
http.request.headers
A map containing the captured header fields from the request. Which headers to capture is configurable. If headers with the same header name are present in the message, they will be separated by commas.
flattened
http.request.method
HTTP request method. The value should retain its casing from the original event. For example, GET, get, and GeT are all considered valid values for this field.
keyword
http.request.referrer
Referrer for this HTTP request.
keyword
http.response.body.bytes
Size in bytes of the response body.
long
http.response.bytes
Total size in bytes of the response (body and headers).
long
http.response.headers
A map containing the captured header fields from the response. Which headers to capture is configurable. If headers with the same header name are present in the message, they will be separated by commas.
flattened
http.response.status_code
HTTP response status code.
long
http.response.status_phrase
The HTTP status phrase.
keyword
http.version
HTTP version.
keyword
method
The command/verb/method of the transaction. For HTTP, this is the method name (GET, POST, PUT, and so on), for SQL this is the verb (SELECT, UPDATE, DELETE, and so on).
keyword
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. Recommended values are: * ingress * egress * inbound * outbound * internal * external * unknown When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.forwarded_ip
Host IP address when the source IP address is the proxy.
ip
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
params
The request parameters. For HTTP, these are the POST or GET parameters. For Thrift-RPC, these are the parameters from the request.
text
path
The path the transaction refers to. For HTTP, this is the URL. For SQL databases, this is the table name. For key-value stores, this is the key.
keyword
query
The query in a human readable format. For HTTP, it will typically be something like GET /users/_search?name=test. For MySQL, it is something like SELECT id from users where name=test.
keyword
related.hosts
All hostnames or other host identifiers seen on your event. Example identifiers include FQDNs, domain names, workstation names, or aliases.
keyword
related.ip
All of the IPs seen on your event.
ip
request
For text protocols, this is the request as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
resource
The logical resource that this transaction refers to. For HTTP, this is the URL path up to the last slash (/). For example, if the URL is /users/1, the resource is /users. For databases, the resource is typically the table name. The field is not filled for all transaction types.
keyword
response
For text protocols, this is the response as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
server.bytes
Bytes sent from the server to the client.
long
server.domain
The domain name of the server system. This value may be a host name, a fully qualified domain name, or another host naming format. The value may derive from the original event or be added from enrichment.
keyword
server.ip
IP address of the server (IPv4 or IPv6).
ip
server.port
Port of the server.
long
server.process.args
The command-line of the process that served the transaction.
keyword
server.process.executable
Absolute path to the server process executable.
keyword
server.process.name
The name of the process that served the transaction.
keyword
server.process.start
The time the server process started.
date
server.process.working_directory
The working directory of the server process.
keyword
source.bytes
Bytes sent from the source to the destination.
long
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
status
The high level status of the transaction. The way to compute this value depends on the protocol, but the result has a meaning independent of the protocol.
keyword
type
The type of the transaction (for example, HTTP, MySQL, Redis, or RUM) or "flow" in case of flows.
keyword
url.domain
Domain of the url, such as "www.elastic.co". In some cases a URL may refer to an IP and/or port directly, without a domain name. In this case, the IP address would go to the domain field. If the URL contains a literal IPv6 address enclosed by [ and ] (IETF RFC 2732), the [ and ] characters should also be captured in the domain field.
keyword
url.extension
The field contains the file extension from the original request url, excluding the leading dot. The file extension is only set if it exists, as not every url has a file extension. The leading period must not be included. For example, the value must be "png", not ".png". Note that when the file name has multiple extensions (example.tar.gz), only the last one should be captured ("gz", not "tar.gz").
keyword
url.full
If full URLs are important to your use case, they should be stored in url.full, whether this field is reconstructed or present in the event source.
wildcard
url.full.text
Multi-field of url.full.
match_only_text
url.path
Path of the request, such as "/search".
wildcard
url.port
Port of the request, such as 443.
long
url.query
The query field describes the query string of the request, such as "q=elasticsearch". The ? is excluded from the query string. If a URL contains no ?, there is no query field. If there is a ? but no query, the query field exists with an empty string. The exists query can be used to differentiate between the two cases.
keyword
url.scheme
Scheme of the request, such as "https". Note: The : is not part of the scheme.
keyword
user_agent.original
Unparsed user_agent string.
keyword
user_agent.original.text
Multi-field of user_agent.original.
match_only_text

An example event for http looks as following:

{
    "@timestamp": "2022-03-09T07:54:42.031Z",
    "agent": {
        "ephemeral_id": "822947c0-15fd-4278-ba0d-2cc64d687bb2",
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "name": "docker-fleet-agent",
        "type": "packetbeat",
        "version": "8.0.0"
    },
    "client": {
        "bytes": 211,
        "ip": "192.168.238.50",
        "port": 64770
    },
    "data_stream": {
        "dataset": "network_traffic.http",
        "namespace": "ep",
        "type": "logs"
    },
    "destination": {
        "bytes": 9108,
        "domain": "packetbeat.com",
        "ip": "107.170.1.22",
        "port": 80
    },
    "ecs": {
        "version": "8.2.0"
    },
    "elastic_agent": {
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "snapshot": false,
        "version": "8.0.0"
    },
    "event": {
        "agent_id_status": "verified",
        "category": [
            "network"
        ],
        "dataset": "network_traffic.http",
        "duration": 141490400,
        "end": "2022-03-09T07:54:42.172Z",
        "ingested": "2022-03-09T07:54:43Z",
        "kind": "event",
        "start": "2022-03-09T07:54:42.031Z",
        "type": [
            "connection",
            "protocol"
        ]
    },
    "host": {
        "architecture": "x86_64",
        "containerized": true,
        "hostname": "docker-fleet-agent",
        "ip": [
            "192.168.176.7"
        ],
        "mac": [
            "02-42-C0-A8-B0-07"
        ],
        "name": "docker-fleet-agent",
        "os": {
            "codename": "focal",
            "family": "debian",
            "kernel": "5.10.47-linuxkit",
            "name": "Ubuntu",
            "platform": "ubuntu",
            "type": "linux",
            "version": "20.04.3 LTS (Focal Fossa)"
        }
    },
    "http": {
        "request": {
            "body": {
                "bytes": 55
            },
            "bytes": 211,
            "headers": {
                "content-length": 55,
                "content-type": "application/x-www-form-urlencoded"
            },
            "method": "POST"
        },
        "response": {
            "body": {
                "bytes": 8936
            },
            "bytes": 9108,
            "headers": {
                "content-length": 8936,
                "content-type": "text/html; charset=utf-8"
            },
            "status_code": 404,
            "status_phrase": "not found"
        },
        "version": "1.1"
    },
    "method": "POST",
    "network": {
        "bytes": 9319,
        "community_id": "1:LREAuuDqOAxXEbzF064U0QX5FBs=",
        "direction": "unknown",
        "protocol": "http",
        "transport": "tcp",
        "type": "ipv4"
    },
    "query": "POST /register",
    "related": {
        "hosts": [
            "packetbeat.com"
        ],
        "ip": [
            "192.168.238.50",
            "107.170.1.22"
        ]
    },
    "server": {
        "bytes": 9108,
        "domain": "packetbeat.com",
        "ip": "107.170.1.22",
        "port": 80
    },
    "source": {
        "bytes": 211,
        "ip": "192.168.238.50",
        "port": 64770
    },
    "status": "Error",
    "type": "http",
    "url": {
        "domain": "packetbeat.com",
        "full": "http://packetbeat.com/register?address=anklamerstr.14b\u0026telephon=8932784368\u0026user=monica",
        "path": "/register",
        "query": "address=anklamerstr.14b\u0026telephon=8932784368\u0026user=monica",
        "scheme": "http"
    },
    "user_agent": {
        "original": "curl/7.37.1"
    }
}

ICMP

Fields published for ICMP packets.

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
client.bytes
Bytes sent from the client to the server.
long
client.ip
IP address of the client (IPv4 or IPv6).
ip
client.port
Port of the client.
long
client.process.args
The command-line of the process that initiated the transaction.
keyword
client.process.executable
Absolute path to the client process executable.
keyword
client.process.name
The name of the process that initiated the transaction.
keyword
client.process.start
The time the client process started.
date
client.process.working_directory
The working directory of the client process.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
destination.bytes
Bytes sent from the destination to the source.
long
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.dataset
Name of the dataset. If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from. It's recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.end
event.end contains the date when the event ended or when the activity was last observed.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.start
event.start contains the date when the event started or when the activity was first observed.
date
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
flow.final
Indicates if event is last event in flow. If final is false, the event reports an intermediate flow state only.
boolean
flow.id
Internal flow ID based on connection meta data and address.
keyword
flow.vlan
VLAN identifier from the 802.1q frame. In case of a multi-tagged frame this field will be an array with the outer tag's VLAN identifier listed first.
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
icmp.request.code
The request code.
long
icmp.request.message
A human readable form of the request.
keyword
icmp.request.type
The request type.
long
icmp.response.code
The response code.
long
icmp.response.message
A human readable form of the response.
keyword
icmp.response.type
The response type.
long
icmp.version
The version of the ICMP protocol.
long
method
The command/verb/method of the transaction. For HTTP, this is the method name (GET, POST, PUT, and so on), for SQL this is the verb (SELECT, UPDATE, DELETE, and so on).
keyword
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. Recommended values are: * ingress * egress * inbound * outbound * internal * external * unknown When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.forwarded_ip
Host IP address when the source IP address is the proxy.
ip
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
params
The request parameters. For HTTP, these are the POST or GET parameters. For Thrift-RPC, these are the parameters from the request.
text
path
The path the transaction refers to. For HTTP, this is the URL. For SQL databases, this is the table name. For key-value stores, this is the key.
keyword
query
The query in a human readable format. For HTTP, it will typically be something like GET /users/_search?name=test. For MySQL, it is something like SELECT id from users where name=test.
keyword
related.ip
All of the IPs seen on your event.
ip
request
For text protocols, this is the request as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
resource
The logical resource that this transaction refers to. For HTTP, this is the URL path up to the last slash (/). For example, if the URL is /users/1, the resource is /users. For databases, the resource is typically the table name. The field is not filled for all transaction types.
keyword
response
For text protocols, this is the response as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
server.bytes
Bytes sent from the server to the client.
long
server.ip
IP address of the server (IPv4 or IPv6).
ip
server.port
Port of the server.
long
server.process.args
The command-line of the process that served the transaction.
keyword
server.process.executable
Absolute path to the server process executable.
keyword
server.process.name
The name of the process that served the transaction.
keyword
server.process.start
The time the server process started.
date
server.process.working_directory
The working directory of the server process.
keyword
source.bytes
Bytes sent from the source to the destination.
long
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
status
The high level status of the transaction. The way to compute this value depends on the protocol, but the result has a meaning independent of the protocol.
keyword
type
The type of the transaction (for example, HTTP, MySQL, Redis, or RUM) or "flow" in case of flows.
keyword

An example event for icmp looks as following:

{
    "@timestamp": "2022-03-09T07:57:32.766Z",
    "agent": {
        "ephemeral_id": "34e079a4-8dee-40db-a820-2296c225fbbe",
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "name": "docker-fleet-agent",
        "type": "packetbeat",
        "version": "8.0.0"
    },
    "client": {
        "bytes": 4,
        "ip": "::1"
    },
    "data_stream": {
        "dataset": "network_traffic.icmp",
        "namespace": "ep",
        "type": "logs"
    },
    "destination": {
        "bytes": 4,
        "ip": "::2"
    },
    "ecs": {
        "version": "8.2.0"
    },
    "elastic_agent": {
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "snapshot": false,
        "version": "8.0.0"
    },
    "event": {
        "agent_id_status": "verified",
        "category": [
            "network"
        ],
        "dataset": "network_traffic.icmp",
        "duration": 13336600,
        "end": "2022-03-09T07:57:32.779Z",
        "ingested": "2022-03-09T07:57:36Z",
        "kind": "event",
        "start": "2022-03-09T07:57:32.766Z",
        "type": [
            "connection"
        ]
    },
    "host": {
        "architecture": "x86_64",
        "containerized": true,
        "hostname": "docker-fleet-agent",
        "ip": [
            "192.168.176.7"
        ],
        "mac": [
            "02-42-C0-A8-B0-07"
        ],
        "name": "docker-fleet-agent",
        "os": {
            "codename": "focal",
            "family": "debian",
            "kernel": "5.10.47-linuxkit",
            "name": "Ubuntu",
            "platform": "ubuntu",
            "type": "linux",
            "version": "20.04.3 LTS (Focal Fossa)"
        }
    },
    "icmp": {
        "request": {
            "code": 0,
            "message": "EchoRequest",
            "type": 128
        },
        "response": {
            "code": 0,
            "message": "EchoReply",
            "type": 129
        },
        "version": 6
    },
    "network": {
        "bytes": 8,
        "community_id": "1:9UpHcZHFAOl8WqZVOs5YRQ5wDGE=",
        "direction": "egress",
        "transport": "ipv6-icmp",
        "type": "ipv6"
    },
    "path": "::2",
    "related": {
        "ip": [
            "::1",
            "::2"
        ]
    },
    "server": {
        "bytes": 4,
        "ip": "::2"
    },
    "source": {
        "bytes": 4,
        "ip": "::1"
    },
    "status": "OK",
    "type": "icmp"
}

Memcached

Fields published for Memcached packets.

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
client.bytes
Bytes sent from the client to the server.
long
client.ip
IP address of the client (IPv4 or IPv6).
ip
client.port
Port of the client.
long
client.process.args
The command-line of the process that initiated the transaction.
keyword
client.process.executable
Absolute path to the client process executable.
keyword
client.process.name
The name of the process that initiated the transaction.
keyword
client.process.start
The time the client process started.
date
client.process.working_directory
The working directory of the client process.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
destination.bytes
Bytes sent from the destination to the source.
long
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.dataset
Name of the dataset. If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from. It's recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.end
event.end contains the date when the event ended or when the activity was last observed.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.outcome
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy. event.outcome simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event. Note that when a single transaction is described in multiple events, each event may populate different values of event.outcome, according to their perspective. Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer. Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with event.type:info, or any events for which an outcome does not make logical sense.
keyword
event.start
event.start contains the date when the event started or when the activity was first observed.
date
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
flow.final
Indicates if event is last event in flow. If final is false, the event reports an intermediate flow state only.
boolean
flow.id
Internal flow ID based on connection meta data and address.
keyword
flow.vlan
VLAN identifier from the 802.1q frame. In case of a multi-tagged frame this field will be an array with the outer tag's VLAN identifier listed first.
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
memcache.protocol_type
The memcache protocol implementation. The value can be "binary" for binary-based, "text" for text-based, or "unknown" for an unknown memcache protocol type.
keyword
memcache.request.automove
The automove mode in the 'slab automove' command expressed as a string. This value can be "standby"(=0), "slow"(=1), "aggressive"(=2), or the raw value if the value is unknown.
keyword
memcache.request.bytes
The byte count of the values being transferred.
long
memcache.request.cas_unique
The CAS (compare-and-swap) identifier if present.
long
memcache.request.command
The memcache command being requested in the memcache text protocol. For example "set" or "get". The binary protocol opcodes are translated into memcache text protocol commands.
keyword
memcache.request.count_values
The number of values found in the memcache request message. If the command does not send any data, this field is missing.
long
memcache.request.delta
The counter increment/decrement delta value.
long
memcache.request.dest_class
The destination class id in 'slab reassign' command.
long
memcache.request.exptime
The data expiry time in seconds sent with the memcache command (if present). If the value is \< 30 days, the expiry time is relative to "now", or else it is an absolute Unix time in seconds (32-bit).
long
memcache.request.flags
The memcache command flags sent in the request (if present).
long
memcache.request.initial
The counter increment/decrement initial value parameter (binary protocol only).
long
memcache.request.keys
The list of keys sent in the store or load commands.
array
memcache.request.line
The raw command line for unknown commands ONLY.
keyword
memcache.request.noreply
Set to true if noreply was set in the request. The memcache.response field will be missing.
boolean
memcache.request.opaque
The binary protocol opaque header value used for correlating request with response messages.
long
memcache.request.opcode
The binary protocol message opcode name.
keyword
memcache.request.opcode_value
The binary protocol message opcode value.
long
memcache.request.quiet
Set to true if the binary protocol message is to be treated as a quiet message.
boolean
memcache.request.raw_args
The text protocol raw arguments for the "stats ..." and "lru crawl ..." commands.
keyword
memcache.request.sleep_us
The sleep setting in microseconds for the 'lru_crawler sleep' command.
long
memcache.request.source_class
The source class id in 'slab reassign' command.
long
memcache.request.type
The memcache command classification. This value can be "UNKNOWN", "Load", "Store", "Delete", "Counter", "Info", "SlabCtrl", "LRUCrawler", "Stats", "Success", "Fail", or "Auth".
keyword
memcache.request.values
The list of base64 encoded values sent with the request (if present).
array
memcache.request.vbucket
The vbucket index sent in the binary message.
long
memcache.request.verbosity
The value of the memcache "verbosity" command.
long
memcache.response.bytes
The byte count of the values being transferred.
long
memcache.response.cas_unique
The CAS (compare-and-swap) identifier to be used with CAS-based updates (if present).
long
memcache.response.command
Either the text based protocol response message type or the name of the originating request if binary protocol is used.
keyword
memcache.response.count_values
The number of values found in the memcache response message. If the command does not send any data, this field is missing.
long
memcache.response.error_msg
The optional error message in the memcache response (text based protocol only).
keyword
memcache.response.flags
The memcache message flags sent in the response (if present).
long
memcache.response.keys
The list of keys returned for the load command (if present).
array
memcache.response.opaque
The binary protocol opaque header value used for correlating request with response messages.
long
memcache.response.opcode
The binary protocol message opcode name.
keyword
memcache.response.opcode_value
The binary protocol message opcode value.
long
memcache.response.stats
The list of statistic values returned. Each entry is a dictionary with the fields "name" and "value".
array
memcache.response.status
The textual representation of the response error code (binary protocol only).
keyword
memcache.response.status_code
The status code value returned in the response (binary protocol only).
long
memcache.response.type
The memcache command classification. This value can be "UNKNOWN", "Load", "Store", "Delete", "Counter", "Info", "SlabCtrl", "LRUCrawler", "Stats", "Success", "Fail", or "Auth". The text based protocol will employ any of these, whereas the binary based protocol will mirror the request commands only (see memcache.response.status for binary protocol).
keyword
memcache.response.value
The counter value returned by a counter operation.
long
memcache.response.values
The list of base64 encoded values sent with the response (if present).
array
memcache.response.version
The returned memcache version string.
keyword
method
The command/verb/method of the transaction. For HTTP, this is the method name (GET, POST, PUT, and so on), for SQL this is the verb (SELECT, UPDATE, DELETE, and so on).
keyword
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. Recommended values are: * ingress * egress * inbound * outbound * internal * external * unknown When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.forwarded_ip
Host IP address when the source IP address is the proxy.
ip
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
params
The request parameters. For HTTP, these are the POST or GET parameters. For Thrift-RPC, these are the parameters from the request.
text
path
The path the transaction refers to. For HTTP, this is the URL. For SQL databases, this is the table name. For key-value stores, this is the key.
keyword
query
The query in a human readable format. For HTTP, it will typically be something like GET /users/_search?name=test. For MySQL, it is something like SELECT id from users where name=test.
keyword
related.ip
All of the IPs seen on your event.
ip
request
For text protocols, this is the request as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
resource
The logical resource that this transaction refers to. For HTTP, this is the URL path up to the last slash (/). For example, if the URL is /users/1, the resource is /users. For databases, the resource is typically the table name. The field is not filled for all transaction types.
keyword
response
For text protocols, this is the response as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
server.bytes
Bytes sent from the server to the client.
long
server.ip
IP address of the server (IPv4 or IPv6).
ip
server.port
Port of the server.
long
server.process.args
The command-line of the process that served the transaction.
keyword
server.process.executable
Absolute path to the server process executable.
keyword
server.process.name
The name of the process that served the transaction.
keyword
server.process.start
The time the server process started.
date
server.process.working_directory
The working directory of the server process.
keyword
source.bytes
Bytes sent from the source to the destination.
long
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
status
The high level status of the transaction. The way to compute this value depends on the protocol, but the result has a meaning independent of the protocol.
keyword
type
The type of the transaction (for example, HTTP, MySQL, Redis, or RUM) or "flow" in case of flows.
keyword

An example event for memcached looks as following:

{
    "@timestamp": "2022-03-09T08:09:26.564Z",
    "agent": {
        "ephemeral_id": "53c3aab1-4c1d-4f33-87a9-1d1d4ce75205",
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "name": "docker-fleet-agent",
        "type": "packetbeat",
        "version": "8.0.0"
    },
    "client": {
        "ip": "192.168.188.37",
        "port": 65195
    },
    "data_stream": {
        "dataset": "network_traffic.memcached",
        "namespace": "ep",
        "type": "logs"
    },
    "destination": {
        "bytes": 1064,
        "ip": "192.168.188.38",
        "port": 11211
    },
    "ecs": {
        "version": "8.2.0"
    },
    "elastic_agent": {
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "snapshot": false,
        "version": "8.0.0"
    },
    "event": {
        "agent_id_status": "verified",
        "category": [
            "network"
        ],
        "dataset": "network_traffic.memcached",
        "ingested": "2022-03-09T08:09:37Z",
        "kind": "event",
        "start": "2022-03-09T08:09:26.564Z",
        "type": [
            "connection",
            "protocol"
        ]
    },
    "event.action": "memcache.store",
    "host": {
        "architecture": "x86_64",
        "containerized": true,
        "hostname": "docker-fleet-agent",
        "ip": [
            "192.168.176.7"
        ],
        "mac": [
            "02-42-C0-A8-B0-07"
        ],
        "name": "docker-fleet-agent",
        "os": {
            "codename": "focal",
            "family": "debian",
            "kernel": "5.10.47-linuxkit",
            "name": "Ubuntu",
            "platform": "ubuntu",
            "type": "linux",
            "version": "20.04.3 LTS (Focal Fossa)"
        }
    },
    "memcache": {
        "protocol_type": "binary",
        "request": {
            "bytes": 1024,
            "command": "set",
            "count_values": 1,
            "exptime": 0,
            "flags": 0,
            "keys": [
                "test_key"
            ],
            "opaque": 65536,
            "opcode": "SetQ",
            "opcode_value": 17,
            "quiet": true,
            "type": "Store",
            "vbucket": 0
        }
    },
    "network": {
        "bytes": 1064,
        "community_id": "1:QMbWqXK5vGDDbp48SEFuFe8Z1lQ=",
        "direction": "unknown",
        "protocol": "memcache",
        "transport": "udp",
        "type": "ipv4"
    },
    "related": {
        "ip": [
            "192.168.188.37",
            "192.168.188.38"
        ]
    },
    "server": {
        "bytes": 1064,
        "ip": "192.168.188.38",
        "port": 11211
    },
    "source": {
        "ip": "192.168.188.37",
        "port": 65195
    },
    "status": "OK",
    "type": "memcache"
}

MongoDB

Fields published for MongoDB packets.

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
client.bytes
Bytes sent from the client to the server.
long
client.ip
IP address of the client (IPv4 or IPv6).
ip
client.port
Port of the client.
long
client.process.args
The command-line of the process that initiated the transaction.
keyword
client.process.executable
Absolute path to the client process executable.
keyword
client.process.name
The name of the process that initiated the transaction.
keyword
client.process.start
The time the client process started.
date
client.process.working_directory
The working directory of the client process.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
destination.bytes
Bytes sent from the destination to the source.
long
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.dataset
Name of the dataset. If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from. It's recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.end
event.end contains the date when the event ended or when the activity was last observed.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.start
event.start contains the date when the event started or when the activity was first observed.
date
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
flow.final
Indicates if event is last event in flow. If final is false, the event reports an intermediate flow state only.
boolean
flow.id
Internal flow ID based on connection meta data and address.
keyword
flow.vlan
VLAN identifier from the 802.1q frame. In case of a multi-tagged frame this field will be an array with the outer tag's VLAN identifier listed first.
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
method
The command/verb/method of the transaction. For HTTP, this is the method name (GET, POST, PUT, and so on), for SQL this is the verb (SELECT, UPDATE, DELETE, and so on).
keyword
mongodb.cursorId
The cursor identifier returned in the OP_REPLY. This must be the value that was returned from the database.
keyword
mongodb.error
If the MongoDB request has resulted in an error, this field contains the error message returned by the server.
keyword
mongodb.fullCollectionName
The full collection name. The full collection name is the concatenation of the database name with the collection name, using a dot (.) for the concatenation. For example, for the database foo and the collection bar, the full collection name is foo.bar.
keyword
mongodb.numberReturned
The number of documents in the reply.
long
mongodb.numberToReturn
The requested maximum number of documents to be returned.
long
mongodb.numberToSkip
Sets the number of documents to omit - starting from the first document in the resulting dataset - when returning the result of the query.
long
mongodb.query
A JSON document that represents the query. The query will contain one or more elements, all of which must match for a document to be included in the result set. Possible elements include $query, $orderby, $hint, $explain, and $snapshot.
keyword
mongodb.returnFieldsSelector
A JSON document that limits the fields in the returned documents. The returnFieldsSelector contains one or more elements, each of which is the name of a field that should be returned, and the integer value 1.
keyword
mongodb.selector
A BSON document that specifies the query for selecting the document to update or delete.
keyword
mongodb.startingFrom
Where in the cursor this reply is starting.
keyword
mongodb.update
A BSON document that specifies the update to be performed. For information on specifying updates, see the Update Operations documentation from the MongoDB Manual.
keyword
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. Recommended values are: * ingress * egress * inbound * outbound * internal * external * unknown When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.forwarded_ip
Host IP address when the source IP address is the proxy.
ip
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
params
The request parameters. For HTTP, these are the POST or GET parameters. For Thrift-RPC, these are the parameters from the request.
text
path
The path the transaction refers to. For HTTP, this is the URL. For SQL databases, this is the table name. For key-value stores, this is the key.
keyword
query
The query in a human readable format. For HTTP, it will typically be something like GET /users/_search?name=test. For MySQL, it is something like SELECT id from users where name=test.
keyword
related.ip
All of the IPs seen on your event.
ip
request
For text protocols, this is the request as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
resource
The logical resource that this transaction refers to. For HTTP, this is the URL path up to the last slash (/). For example, if the URL is /users/1, the resource is /users. For databases, the resource is typically the table name. The field is not filled for all transaction types.
keyword
response
For text protocols, this is the response as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
server.bytes
Bytes sent from the server to the client.
long
server.ip
IP address of the server (IPv4 or IPv6).
ip
server.port
Port of the server.
long
server.process.args
The command-line of the process that served the transaction.
keyword
server.process.executable
Absolute path to the server process executable.
keyword
server.process.name
The name of the process that served the transaction.
keyword
server.process.start
The time the server process started.
date
server.process.working_directory
The working directory of the server process.
keyword
source.bytes
Bytes sent from the source to the destination.
long
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
status
The high level status of the transaction. The way to compute this value depends on the protocol, but the result has a meaning independent of the protocol.
keyword
type
The type of the transaction (for example, HTTP, MySQL, Redis, or RUM) or "flow" in case of flows.
keyword

An example event for mongodb looks as following:

{
    "@timestamp": "2022-03-09T08:15:48.570Z",
    "agent": {
        "ephemeral_id": "fafaeb02-c623-46a0-a3e0-72e035bd12ba",
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "name": "docker-fleet-agent",
        "type": "packetbeat",
        "version": "8.0.0"
    },
    "client": {
        "bytes": 50,
        "ip": "127.0.0.1",
        "port": 57203
    },
    "data_stream": {
        "dataset": "network_traffic.mongodb",
        "namespace": "ep",
        "type": "logs"
    },
    "destination": {
        "bytes": 514,
        "ip": "127.0.0.1",
        "port": 27017
    },
    "ecs": {
        "version": "8.2.0"
    },
    "elastic_agent": {
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "snapshot": false,
        "version": "8.0.0"
    },
    "event": {
        "agent_id_status": "verified",
        "category": [
            "network"
        ],
        "dataset": "network_traffic.mongodb",
        "duration": 1365900,
        "end": "2022-03-09T08:15:48.571Z",
        "ingested": "2022-03-09T08:15:49Z",
        "kind": "event",
        "start": "2022-03-09T08:15:48.570Z",
        "type": [
            "connection",
            "protocol"
        ]
    },
    "host": {
        "architecture": "x86_64",
        "containerized": true,
        "hostname": "docker-fleet-agent",
        "ip": [
            "192.168.176.7"
        ],
        "mac": [
            "02-42-C0-A8-B0-07"
        ],
        "name": "docker-fleet-agent",
        "os": {
            "codename": "focal",
            "family": "debian",
            "kernel": "5.10.47-linuxkit",
            "name": "Ubuntu",
            "platform": "ubuntu",
            "type": "linux",
            "version": "20.04.3 LTS (Focal Fossa)"
        }
    },
    "method": "find",
    "mongodb": {
        "cursorId": 0,
        "fullCollectionName": "test.restaurants",
        "numberReturned": 1,
        "numberToReturn": 1,
        "numberToSkip": 0,
        "startingFrom": 0
    },
    "network": {
        "bytes": 564,
        "community_id": "1:mYSTZ4QZBfvJO05Em9TnPwrae6g=",
        "direction": "ingress",
        "protocol": "mongodb",
        "transport": "tcp",
        "type": "ipv4"
    },
    "query": "test.restaurants.find().limit(1)",
    "related": {
        "ip": [
            "127.0.0.1"
        ]
    },
    "resource": "test.restaurants",
    "server": {
        "bytes": 514,
        "ip": "127.0.0.1",
        "port": 27017
    },
    "source": {
        "bytes": 50,
        "ip": "127.0.0.1",
        "port": 57203
    },
    "status": "OK",
    "type": "mongodb"
}

MySQL

Fields published for MySQL packets.

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
client.bytes
Bytes sent from the client to the server.
long
client.ip
IP address of the client (IPv4 or IPv6).
ip
client.port
Port of the client.
long
client.process.args
The command-line of the process that initiated the transaction.
keyword
client.process.executable
Absolute path to the client process executable.
keyword
client.process.name
The name of the process that initiated the transaction.
keyword
client.process.start
The time the client process started.
date
client.process.working_directory
The working directory of the client process.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
destination.bytes
Bytes sent from the destination to the source.
long
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.dataset
Name of the dataset. If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from. It's recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.end
event.end contains the date when the event ended or when the activity was last observed.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.start
event.start contains the date when the event started or when the activity was first observed.
date
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
flow.final
Indicates if event is last event in flow. If final is false, the event reports an intermediate flow state only.
boolean
flow.id
Internal flow ID based on connection meta data and address.
keyword
flow.vlan
VLAN identifier from the 802.1q frame. In case of a multi-tagged frame this field will be an array with the outer tag's VLAN identifier listed first.
long
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
method
The command/verb/method of the transaction. For HTTP, this is the method name (GET, POST, PUT, and so on), for SQL this is the verb (SELECT, UPDATE, DELETE, and so on).
keyword
mysql.affected_rows
If the MySQL command is successful, this field contains the affected number of rows of the last statement.
long
mysql.error_code
The error code returned by MySQL.
long
mysql.error_message
The error info message returned by MySQL.
keyword
mysql.insert_id
If the INSERT query is successful, this field contains the id of the newly inserted row.
keyword
mysql.num_fields
If the SELECT query is successful, this field is set to the number of fields returned.
long
mysql.num_rows
If the SELECT query is successful, this field is set to the number of rows returned.
long
mysql.query
The row mysql query as read from the transaction's request.
keyword
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. Recommended values are: * ingress * egress * inbound * outbound * internal * external * unknown When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.forwarded_ip
Host IP address when the source IP address is the proxy.
ip
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
params
The request parameters. For HTTP, these are the POST or GET parameters. For Thrift-RPC, these are the parameters from the request.
text
path
The path the transaction refers to. For HTTP, this is the URL. For SQL databases, this is the table name. For key-value stores, this is the key.
keyword
query
The query in a human readable format. For HTTP, it will typically be something like GET /users/_search?name=test. For MySQL, it is something like SELECT id from users where name=test.
keyword
related.ip
All of the IPs seen on your event.
ip
request
For text protocols, this is the request as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
resource
The logical resource that this transaction refers to. For HTTP, this is the URL path up to the last slash (/). For example, if the URL is /users/1, the resource is /users. For databases, the resource is typically the table name. The field is not filled for all transaction types.
keyword
response
For text protocols, this is the response as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
server.bytes
Bytes sent from the server to the client.
long
server.ip
IP address of the server (IPv4 or IPv6).
ip
server.port
Port of the server.
long
server.process.args
The command-line of the process that served the transaction.
keyword
server.process.executable
Absolute path to the server process executable.
keyword
server.process.name
The name of the process that served the transaction.
keyword
server.process.start
The time the server process started.
date
server.process.working_directory
The working directory of the server process.
keyword
source.bytes
Bytes sent from the source to the destination.
long
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
status
The high level status of the transaction. The way to compute this value depends on the protocol, but the result has a meaning independent of the protocol.
keyword
type
The type of the transaction (for example, HTTP, MySQL, Redis, or RUM) or "flow" in case of flows.
keyword

An example event for mysql looks as following:

{
    "@timestamp": "2022-03-09T08:20:44.667Z",
    "agent": {
        "ephemeral_id": "43167926-7ebd-4acd-8216-daf3664fe286",
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "name": "docker-fleet-agent",
        "type": "packetbeat",
        "version": "8.0.0"
    },
    "client": {
        "bytes": 23,
        "ip": "127.0.0.1",
        "port": 41517
    },
    "data_stream": {
        "dataset": "network_traffic.mysql",
        "namespace": "ep",
        "type": "logs"
    },
    "destination": {
        "bytes": 3629,
        "ip": "127.0.0.1",
        "port": 3306
    },
    "ecs": {
        "version": "8.2.0"
    },
    "elastic_agent": {
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "snapshot": false,
        "version": "8.0.0"
    },
    "event": {
        "agent_id_status": "verified",
        "category": [
            "network"
        ],
        "dataset": "network_traffic.mysql",
        "duration": 5532500,
        "end": "2022-03-09T08:20:44.673Z",
        "ingested": "2022-03-09T08:20:45Z",
        "kind": "event",
        "start": "2022-03-09T08:20:44.667Z",
        "type": [
            "connection",
            "protocol"
        ]
    },
    "host": {
        "architecture": "x86_64",
        "containerized": true,
        "hostname": "docker-fleet-agent",
        "ip": [
            "192.168.176.7"
        ],
        "mac": [
            "02-42-C0-A8-B0-07"
        ],
        "name": "docker-fleet-agent",
        "os": {
            "codename": "focal",
            "family": "debian",
            "kernel": "5.10.47-linuxkit",
            "name": "Ubuntu",
            "platform": "ubuntu",
            "type": "linux",
            "version": "20.04.3 LTS (Focal Fossa)"
        }
    },
    "method": "SELECT",
    "mysql": {
        "affected_rows": 0,
        "insert_id": 0,
        "num_fields": 3,
        "num_rows": 15
    },
    "network": {
        "bytes": 3652,
        "community_id": "1:goIcZn7CMIJ6W7Yf8JRV618zzxA=",
        "direction": "ingress",
        "protocol": "mysql",
        "transport": "tcp",
        "type": "ipv4"
    },
    "path": "test.test",
    "query": "select * from test",
    "related": {
        "ip": [
            "127.0.0.1"
        ]
    },
    "server": {
        "bytes": 3629,
        "ip": "127.0.0.1",
        "port": 3306
    },
    "source": {
        "bytes": 23,
        "ip": "127.0.0.1",
        "port": 41517
    },
    "status": "OK",
    "type": "mysql"
}

NFS

Fields published for NFS packets.

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
client.bytes
Bytes sent from the client to the server.
long
client.domain
The domain name of the client system. This value may be a host name, a fully qualified domain name, or another host naming format. The value may derive from the original event or be added from enrichment.
keyword
client.ip
IP address of the client (IPv4 or IPv6).
ip
client.port
Port of the client.
long
client.process.args
The command-line of the process that initiated the transaction.
keyword
client.process.executable
Absolute path to the client process executable.
keyword
client.process.name
The name of the process that initiated the transaction.
keyword
client.process.start
The time the client process started.
date
client.process.working_directory
The working directory of the client process.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object
container.name
Container name.
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
destination.bytes
Bytes sent from the destination to the source.
long
destination.ip
IP address of the destination (IPv4 or IPv6).
ip
destination.port
Port of the destination.
long
ecs.version
ECS version this event conforms to. ecs.version is a required field and must exist in all events. When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
keyword
event.action
The action captured by the event. This describes the information in the event. It is more specific than event.category. Examples are group-add, process-started, file-created. The value is normally defined by the implementer.
keyword
event.category
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy. event.category represents the "big buckets" of ECS categories. For example, filtering on event.category:process yields all events relating to process activity. This field is closely related to event.type, which is used as a subcategory. This field is an array. This will allow proper categorization of some events that fall in multiple categories.
keyword
event.dataset
Name of the dataset. If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from. It's recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
keyword
event.duration
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
long
event.end
event.end contains the date when the event ended or when the activity was last observed.
date
event.kind
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy. event.kind gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events. The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
keyword
event.start
event.start contains the date when the event started or when the activity was first observed.
date
event.type
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy. event.type represents a categorization "sub-bucket" that, when used along with the event.category field values, enables filtering events down to a level appropriate for single visualization. This field is an array. This will allow proper categorization of some events that fall in multiple event types.
keyword
flow.final
Indicates if event is last event in flow. If final is false, the event reports an intermediate flow state only.
boolean
flow.id
Internal flow ID based on connection meta data and address.
keyword
flow.vlan
VLAN identifier from the 802.1q frame. In case of a multi-tagged frame this field will be an array with the outer tag's VLAN identifier listed first.
long
group.id
Unique identifier for the group on the system/platform.
keyword
host.architecture
Operating system architecture.
keyword
host.containerized
If the host is a container.
boolean
host.domain
Name of the domain of which the host is a member. For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
keyword
host.hostname
Hostname of the host. It normally contains what the hostname command returns on the host machine.
keyword
host.id
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of beat.name.
keyword
host.ip
Host ip addresses.
ip
host.mac
Host mac addresses.
keyword
host.name
Name of the host. It can contain what hostname returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
keyword
host.os.build
OS build information.
keyword
host.os.codename
OS codename, if any.
keyword
host.os.family
OS family (such as redhat, debian, freebsd, windows).
keyword
host.os.kernel
Operating system kernel version as a raw string.
keyword
host.os.name
Operating system name, without the version.
keyword
host.os.name.text
Multi-field of host.os.name.
text
host.os.platform
Operating system platform (such centos, ubuntu, windows).
keyword
host.os.version
Operating system version as a raw string.
keyword
host.type
Type of host. For Cloud providers this can be the machine type like t2.medium. If vm, this could be the container, for example, or other information meaningful in your environment.
keyword
method
The command/verb/method of the transaction. For HTTP, this is the method name (GET, POST, PUT, and so on), for SQL this is the verb (SELECT, UPDATE, DELETE, and so on).
keyword
network.bytes
Total bytes transferred in both directions. If source.bytes and destination.bytes are known, network.bytes is their sum.
long
network.community_id
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
keyword
network.direction
Direction of the network traffic. Recommended values are: * ingress * egress * inbound * outbound * internal * external * unknown When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress". When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external". Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
keyword
network.forwarded_ip
Host IP address when the source IP address is the proxy.
ip
network.protocol
In the OSI Model this would be the Application Layer protocol. For example, http, dns, or ssh. The field value must be normalized to lowercase for querying.
keyword
network.transport
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying.
keyword
network.type
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying.
keyword
nfs.minor_version
NFS protocol minor version number.
long
nfs.opcode
NFS operation name, or main operation name, in case of COMPOUND calls.
keyword
nfs.status
NFS operation reply status.
keyword
nfs.tag
NFS v4 COMPOUND operation tag.
keyword
nfs.version
NFS protocol version number.
long
params
The request parameters. For HTTP, these are the POST or GET parameters. For Thrift-RPC, these are the parameters from the request.
text
path
The path the transaction refers to. For HTTP, this is the URL. For SQL databases, this is the table name. For key-value stores, this is the key.
keyword
query
The query in a human readable format. For HTTP, it will typically be something like GET /users/_search?name=test. For MySQL, it is something like SELECT id from users where name=test.
keyword
related.ip
All of the IPs seen on your event.
ip
request
For text protocols, this is the request as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
resource
The logical resource that this transaction refers to. For HTTP, this is the URL path up to the last slash (/). For example, if the URL is /users/1, the resource is /users. For databases, the resource is typically the table name. The field is not filled for all transaction types.
keyword
response
For text protocols, this is the response as seen on the wire (application layer only). For binary protocols this is our representation of the request.
text
rpc.auth_flavor
RPC authentication flavor.
keyword
rpc.cred.gid
RPC caller's group id, in case of auth-unix.
long
rpc.cred.gids
RPC caller's secondary group ids, in case of auth-unix.
long
rpc.cred.machinename
The name of the caller's machine.
keyword
rpc.cred.stamp
Arbitrary ID which the caller machine may generate.
long
rpc.cred.uid
RPC caller's user id, in case of auth-unix.
long
rpc.status
RPC message reply status.
keyword
rpc.xid
RPC message transaction identifier.
keyword
server.bytes
Bytes sent from the server to the client.
long
server.ip
IP address of the server (IPv4 or IPv6).
ip
server.port
Port of the server.
long
server.process.args
The command-line of the process that served the transaction.
keyword
server.process.executable
Absolute path to the server process executable.
keyword
server.process.name
The name of the process that served the transaction.
keyword
server.process.start
The time the server process started.
date
server.process.working_directory
The working directory of the server process.
keyword
source.bytes
Bytes sent from the source to the destination.
long
source.domain
The domain name of the source system. This value may be a host name, a fully qualified domain name, or another host naming format. The value may derive from the original event or be added from enrichment.
keyword
source.ip
IP address of the source (IPv4 or IPv6).
ip
source.port
Port of the source.
long
status
The high level status of the transaction. The way to compute this value depends on the protocol, but the result has a meaning independent of the protocol.
keyword
type
The type of the transaction (for example, HTTP, MySQL, Redis, or RUM) or "flow" in case of flows.
keyword
user.id
Unique identifier of the user.
keyword

An example event for nfs looks as following:

{
    "@timestamp": "2022-03-09T08:24:00.569Z",
    "agent": {
        "ephemeral_id": "62904593-11a1-4706-8487-78b14fb72c08",
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "name": "docker-fleet-agent",
        "type": "packetbeat",
        "version": "8.0.0"
    },
    "client": {
        "bytes": 208,
        "domain": "desycloud03.desy.de",
        "ip": "131.169.5.156",
        "port": 907
    },
    "data_stream": {
        "dataset": "network_traffic.nfs",
        "namespace": "ep",
        "type": "logs"
    },
    "destination": {
        "bytes": 176,
        "ip": "131.169.192.35",
        "port": 2049
    },
    "ecs": {
        "version": "8.2.0"
    },
    "elastic_agent": {
        "id": "f789afb0-558d-48bd-b448-0fc838efd730",
        "snapshot": false,
        "version": "8.0.0"
    },
    "event": {
        "action": "nfs.CLOSE",
        "agent_id_status": "verified",
        "category": [
            "network"
        ],
        "dataset": "network_traffic.nfs",
        "duration": 6573500,
        "end": "2022-03-09T08:24:00.575Z",
        "ingested": "2022-03-09T08:24:01Z",
        "kind": "event",
        "start": "2022-03-09T08:24:00.569Z",
        "type": [
            "connection",
            "protocol"
        ]
    },
    "group.id": 48,
    "host": {
        "architecture": "x86_64",
        "containerized": true,
        "hostname": "docker-fleet-agent",
        "ip": [
            "192.168.176.7"
        ],
        "mac": [
            "02-42-C0-A8-B0-07"
        ],
        "name": "docker-fleet-agent",
        "os": {
            "codename": "focal",
            "family": "debian",
            "kernel": "5.10.47-linuxkit",
            "name": "Ubuntu",
            "platform": "ubuntu",
            "type": "linux",
            "version": "20.04.3 LTS (Focal Fossa)"
        }
    },
    "host.hostname": "desycloud03.desy.de",
    "network": {
        "bytes": 384,
        "community_id": "1:cd5eLXemAsSPMdXwCbdDUWWud4M=",
        "direction": "unknown",
        "protocol": "nfsv4",
        "transport": "tcp",
        "type": "ipv4"
    },
    "nfs": {
        "minor_version": 1,
        "opcode": "CLOSE",
        "status": "NFS_OK",
        "tag": "",
        "version": 4
    },
    "related": {
        "ip": [
            "131.169.5.156",
            "131.169.192.35"
        ]
    },
    "rpc": {
        "auth_flavor": "unix",
        "cred": {
            "gid": 48,
            "gids": [
                48
            ],
            "machinename": "desycloud03.desy.de",
            "stamp": 4308441,
            "uid": 48
        },
        "status": "success",
        "xid": "c3103fc1"
    },
    "server": {
        "bytes": 176,
        "ip": "131.169.192.35",
        "port": 2049
    },
    "source": {
        "bytes": 208,
        "domain": "desycloud03.desy.de",
        "ip": "131.169.5.156",
        "port": 907
    },
    "status": "OK",
    "type": "nfs",
    "user.id": 48
}

PostgreSQL

Fields published for PostgreSQL packets.

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
client.bytes
Bytes sent from the client to the server.
long
client.ip
IP address of the client (IPv4 or IPv6).
ip
client.port
Port of the client.
long
client.process.args
The command-line of the process that initiated the transaction.
keyword
client.process.executable
Absolute path to the client process executable.
keyword
client.process.name
The name of the process that initiated the transaction.
keyword
client.process.start
The time the client process started.
date
client.process.working_directory
The working directory of the client process.
keyword
cloud.account.id
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
keyword
cloud.availability_zone
Availability zone in which this host is running.
keyword
cloud.image.id
Image ID for the cloud instance.
keyword
cloud.instance.id
Instance ID of the host machine.
keyword
cloud.instance.name
Instance name of the host machine.
keyword
cloud.machine.type
Machine type of the host machine.
keyword
cloud.project.id
Name of the project in Google Cloud.
keyword
cloud.provider
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
keyword
cloud.region
Region in which this host is running.
keyword
container.id
Unique container id.
keyword
container.image.name
Name of the image the container was built on.
keyword
container.labels
Image labels.
object